Background Insufficient knowledge of the genetic and phenotypic diversity in the local Beninese goat population combined with the lack of understanding of its adaptive capacity to ongoing environmental and societal changes hampers the development of strategies for better management and genetic improvement. The objective of this study was to establish the current geographical distribution of goats in Benin based on their morphology and model the potential habitat suitability of the three known main goat phenotypes (i.e., Djallonké goat or Type I, Sahelian goat or Type II, and their Crossbreeds or Type III) under climate change scenarios. Ten qualitative and 26 linear body measurements were taken on 2114 adult female goats sampled across the three vegetation zones of the country. Fifteen ratios were generated from the quantitative variables. The data were analyzed using generalized linear model procedures followed by multiple comparisons of least-squares means and multivariate analytical methods, including canonical discrimination analysis and hierarchical ascendant classification. Each goat was then assigned to one of the three aforementioned main goat phenotypes following its morphological characteristics and according to the a priori cluster membership defined in the previous step. The Maximum Entropy algorithm was used to model the current and future distribution of the three goat phenotypes under climate change scenario using the Representative Conservation Pathways 4.5 and 8.5. Results All linear body measurements varied among vegetation zones. In the discriminant function analysis, 71% of the measured individuals were correctly classified in their vegetation zone of origin by seven measured variables and three ratios. The cluster procedure analysis revealed two groups of goats subdivided into the three main phenotypes. The modeling results showed that the currently highly favorable habitats were distributed in the South for Type I, in the North for Type II, and both South and North for Type III. However, under climate change scenarios, the favorable habitats for Type I decreased while those of Types II and III increased. Conclusions The results of this study confirm the spatial variation of the goat population in Benin. The habitat suitability model can be used to support decision-making toward better management of goat genetic diversity in Benin.
Knowledge of both the genetic diversity and geographical distribution of animal genetic resources is a prerequisite for their sustainable utilization, improvement and conservation. The present study was undertaken to explore the current morphological variability within the sheep population in Benin as a prelude for their molecular characterization. From November 2018 to February 2020, 25 quantitative linear body measurements and 5 qualitative physical traits were recorded on 1240 adult ewes from the 10 phytogeographic zones that comprise the three vegetation zones of Benin. Fourteen morphological indices were calculated based on the linear body measurements. The collected data were first analyzed using multiple comparisons of least-square means (LSmeans), followed by generalized linear model (GLM) procedures, to explore the relationships among the measured morphometric traits and the 10 phytogeographic zones. Next, the presence of any genetic sub-populations was examined using multivariate analytical methods, including canonical discriminant analysis (CDA) and ascending hierarchical clustering (AHC). Univariate analyses indicated that all quantitative linear body measurements varied significantly (P<0.05) across the phytogeographic zones. The highest values (LSmean± standard error) of withers height (68.3±0.47 cm), sternum height (46.0±0.35 cm), and rump height (68.8±0.47 cm) were recorded in the Mekrou-Pendjari zone, the drier phytogeographic zone in the North, whereas the lowest values, 49.2±0.34, 25.9±0.26, and 52.0±0.35 cm, respectively, were recorded in the Pobe zone in the South. Multivariate analyses revealed the prevalence of four distinct sheep sub-populations in Benin. The sub-population from the South could be assimilated to the short-legged and that from the North to the West African long-legged sheep. The two other sub-populations were intermediate and closer to the crossbreeds or another short-legged sub-breed. The proportion of individuals correctly classified in their group of origin was approximately 74%. These results uncovered a spatial morphological variation in the Beninese sheep population along a South-North phytogeographic gradient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.