SUMMARYNeuronal CaMKII holoenzymes (α- and β-isoforms) enable molecular signal computation underlying learning and memory, but also mediate excitotoxic neuronal death. Here, we provide a comparative analysis of these signaling devices, using single particle EM in combination with biochemical and live-cell imaging studies. In the basal state, both isoforms assembled mainly as 12-mers (but also 14-mers, and even 16-mers for the β-isoform). CaMKIIα and β-isoforms adopted an ensemble of extended activatable states (with average radius of 12.6 versus 16.8 nm, respectively), characterized by multiple transient intra- and inter-holoenzyme interactions associated with distinct functional properties. The extended state of CaMKIIβ allowed EM analysis to directly resolve intra-holoenzyme kinase-domain dimers that could enable the cooperative activation mechanism by calmodulin, which was found for both isoforms. Surprisingly, high-order CaMKII clustering mediated by inter-holoenzyme kinase-domain dimerization was reduced for the β isoform for both basal and excitotoxicity-induced clusters, both in vitro and in neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.