The release of vesicular protons during exocytosis causes a feedback inhibition of Ca2+ channels in photoreceptor terminals; however, the effect of this inhibition on subsequent exocytosis has not been studied. Here we show that a similar L-type Ca2+ channel inhibition occurs in bipolar cell terminals in slices of goldfish retina, and we investigate the effect that this has on subsequent exocytosis with membrane capacitance measurements. We find that transient Ca2+ current inhibition is correlated with exocytosis and modulated by the concentration of extracellular pH buffer. Ca2+ current inhibition is negligible in acutely dissociated terminals, demonstrating the importance of an intact synaptic cleft. The sensitivity of bipolar cell Ca2+ currents to extracellular pH was assessed: channel conductance is reduced and activation is shifted to more positive potentials by acidification. The effect of Ca2+ current inhibition on subsequent exocytosis was investigated by measuring paired-pulse depression. Under conditions in which there is a large amount of inhibition of Ca2+ influx, the degree of paired-pulse depression is significantly reduced. Finally, we show that under physiological (bicarbonate) buffering conditions, pronounced Ca2+ current inhibition occurs after exocytosis ( approximately 60% peak inhibition), which can decrease subsequent exocytosis during single depolarizations. We estimate that exocytosis is accompanied by a transient change in synaptic cleft pH from 7.5 to approximately 6.9. We suggest that this effect serves as an activity-dependent modulator of exocytosis at ribbon-type synapses where a large and compact coterie of vesicles can fuse at each active zone.
Thalamocortical (TC) afferents relay sensory input to the cortex by making synapses onto both excitatory regular-spiking principal cells (RS cells) and inhibitory fast-spiking interneurons (FS cells). This divergence plays a crucial role in coordinating excitation with inhibition during the earliest steps of somatosensory processing in the cortex. Although the same TC afferents contact both FS and RS cells, FS cells receive larger and faster excitatory inputs from individual TC afferents. Here, we show that this larger thalamic excitation of FS cells occurs via GluR2-lacking AMPA receptors (AMPARs), and results from a fourfold larger quantal amplitude compared with the thalamic inputs onto RS cells. Thalamic afferents also activate NMDA receptors (NMDARs) at synapses onto both cells types, yet RS cell NMDAR currents are slower and pass more current at physiological membrane potentials. Because of these synaptic specializations, GluR2-lacking AMPARs selectively maintain feedforward inhibition of RS cells, whereas NMDARs contribute to the spiking of RS cells and hence to cortical recurrent excitation. Thus, thalamic afferent activity diverges into two routes that rely on unique complements of postsynaptic AMPARs and NMDARs to orchestrate the dynamic balance of excitation and inhibition as sensory input enters the cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.