An equiangular tight frame (ETF) is a sequence of unit-norm vectors in a Euclidean space whose coherence achieves equality in the Welch bound, and thus yields an optimal packing in a projective space. A regular simplex is a simple type of ETF in which the number of vectors is one more than the dimension of the underlying space. More sophisticated examples include harmonic ETFs which equate to difference sets in finite abelian groups. Recently, it was shown that some harmonic ETFs are comprised of regular simplices. In this paper, we continue the investigation into these special harmonic ETFs. We begin by characterizing when the subspaces that are spanned by the ETF's regular simplices form an equi-isoclinic tight fusion frame (EITFF), which is a type of optimal packing in a Grassmannian space. We shall see that every difference set that produces an EITFF in this way also yields a complex circulant conference matrix. Next, we consider a subclass of these difference sets that can be factored in terms of a smaller difference set and a relative difference set. It turns out that these relative difference sets lend themselves to a second, related and yet distinct, construction of complex circulant conference matrices. Finally, we provide explicit infinite families of ETFs to which this theory applies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.