ObjectiveResearch studies show that social media may be valuable tools in the disease surveillance toolkit used for improving public health professionals’ ability to detect disease outbreaks faster than traditional methods and to enhance outbreak response. A social media work group, consisting of surveillance practitioners, academic researchers, and other subject matter experts convened by the International Society for Disease Surveillance, conducted a systematic primary literature review using the PRISMA framework to identify research, published through February 2013, answering either of the following questions:Can social media be integrated into disease surveillance practice and outbreak management to support and improve public health?Can social media be used to effectively target populations, specifically vulnerable populations, to test an intervention and interact with a community to improve health outcomes?Examples of social media included are Facebook, MySpace, microblogs (e.g., Twitter), blogs, and discussion forums. For Question 1, 33 manuscripts were identified, starting in 2009 with topics on Influenza-like Illnesses (n = 15), Infectious Diseases (n = 6), Non-infectious Diseases (n = 4), Medication and Vaccines (n = 3), and Other (n = 5). For Question 2, 32 manuscripts were identified, the first in 2000 with topics on Health Risk Behaviors (n = 10), Infectious Diseases (n = 3), Non-infectious Diseases (n = 9), and Other (n = 10).ConclusionsThe literature on the use of social media to support public health practice has identified many gaps and biases in current knowledge. Despite the potential for success identified in exploratory studies, there are limited studies on interventions and little use of social media in practice. However, information gleaned from the articles demonstrates the effectiveness of social media in supporting and improving public health and in identifying target populations for intervention. A primary recommendation resulting from the review is to identify opportunities that enable public health professionals to integrate social media analytics into disease surveillance and outbreak management practice.
This paper presents a knowledge-based method for measuring the semanticsimilarity of texts. While there is a large body of previous work focused on finding the semantic similarity of concepts and words, the application of these wordoriented methods to text similarity has not been yet explored. In this paper, we introduce a method that combines wordto-word similarity metrics into a text-totext metric, and we show that this method outperforms the traditional text similarity metrics based on lexical matching.
Text and structural data mining of web and social media (WSM) provides a novel disease surveillance resource and can identify online communities for targeted public health communications (PHC) to assure wide dissemination of pertinent information. WSM that mention influenza are harvested over a 24-week period, 5 October 2008 to 21 March 2009. Link analysis reveals communities for targeted PHC. Text mining is shown to identify trends in flu posts that correlate to real-world influenza-like illness patient report data. We also bring to bear a graph-based data mining technique to detect anomalies among flu blogs connected by publisher type, links, and user-tags.
This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in “real-time”) and forecasting (predicting the future) ILI dynamics in the 2011 – 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns. (g) Model performance improves with more tweets available per geo-location e.g., the error gets lower and the Pearson score gets higher for locations with more tweets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.