Pleiotropy and genetic correlation are widespread features in GWAS, but they are often difficult to interpret at the molecular level. Here, we perform GWAS of 16 metabolites clustered at the intersection of amino acid catabolism, glycolysis, and ketone body metabolism in a subset of UK Biobank. We utilize the well-documented biochemistry jointly impacting these metabolites to analyze pleiotropic effects in the context of their pathways. Among the 213 lead GWAS hits, we find a strong enrichment for genes encoding pathway-relevant enzymes and transporters. We demonstrate that the effect directions of variants acting on biology between metabolite pairs often contrast with those of upstream or downstream variants as well as the polygenic background. Thus, we find that these outlier variants often reflect biology local to the traits. Finally, we explore the implications for interpreting disease GWAS, underscoring the potential of unifying biochemistry with dense metabolomics data to understand the molecular basis of pleiotropy in complex traits and diseases.
Genome-wide association studies have revealed that the genetic architectures of complex traits vary widely, including in terms of the numbers, effect sizes, and allele frequencies of significant hits. However, at present we lack a principled way of understanding the similarities and differences among traits. Here, we describe a probabilistic model that combines mutation, drift, and stabilizing selection at individual sites with a genome-scale model of phenotypic variation. In this model, the architecture of a trait arises from the distribution of selection coefficients of mutations and from two scaling parameters. We fit this model for 95 diverse, highly polygenic quantitative traits from the UK Biobank. Notably, we infer similar distributions of selection coefficients across all these traits. This shared distribution implies that differences in architectures of highly polygenic traits arise mainly from the two scaling parameters: the mutational target size and heritability per site, which vary by orders of magnitude across traits. When these two scale factors are accounted for, the architectures of all 95 traits are nearly identical.
Despite the growing number of genome-wide association studies (GWAS) for complex traits, it remains unclear whether effect sizes of causal genetic variants differ between populations. In principle, effect sizes of causal variants could differ between populations due to gene-by-gene or gene-by-environment interactions. However, comparing causal variant effect sizes is challenging: it is difficult to know which variants are causal, and comparisons of variant effect sizes are confounded by differences in linkage disequilibrium (LD) structure between ancestries. Here, we develop a method to assess causal variant effect size differences that overcomes these limitations. Specifically, we leverage the fact that segments of European ancestry shared between European-American and admixed African-American individuals have similar LD structure, allowing for unbiased comparisons of variant effect sizes in European ancestry segments. We apply our method to two types of traits: gene expression and low-density lipoprotein cholesterol (LDL-C). We find that causal variant effect sizes for gene expression are significantly different between European-Americans and African-Americans; for LDL-C, we observe a similar point estimate although this is not significant, likely due to lower statistical power. Cross-population differences in variant effect sizes highlight the role of genetic interactions in trait architecture and will contribute to the poor portability of polygenic scores across populations, reinforcing the importance of conducting GWAS on individuals of diverse ancestries and environments.
The expected frequency among relatives of ascertained individuals for a threshold trait with multifactorial inheritance is presen ted for the upper range of population frequency. Expected values of various measures of concordance in twins are also derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.