Two new Raman modes below 100 cm(-1) are observed in twisted bilayer graphene grown by chemical vapor deposition. The two modes are observed in a small range of twisting angle at which the intensity of the G Raman peak is strongly enhanced, indicating that these low energy modes and the G Raman mode share the same resonance enhancement mechanism, as a function of twisting angle. The ~94 cm(-1) mode (measured with a 532 nm laser excitation) is assigned to the fundamental layer breathing vibration (ZO' mode) mediated by the twisted bilayer graphene lattice, which lacks long-range translational symmetry. The dependence of this mode's frequency and line width on the rotational angle can be explained by the double resonance Raman process that is different from the previously identified Raman processes activated by twisted bilayer graphene superlattice. The dependence also reveals the strong impact of electronic-band overlaps of the two graphene layers. Another new mode at ~52 cm(-1), not observed previously in the bilayer graphene system, is tentatively attributed to a torsion mode in which the bottom and top graphene layers rotate out-of-phase in the plane.
ABSTRACT:We investigated the low-frequency Raman spectra of freestanding few-layer graphene (FLG) at varying temperatures (400 -900 K) controlled by laser heating. At high temperature, we observed the fundamental Raman mode for the lowest-frequency branch of rigid-plane layer-breathing mode (LBM) vibration. The mode frequency redshifts dramatically from 81 cm -1 for bilayer to 23 cm -1 for 8-layer. The thickness dependence is well described by a simple model of coupled oscillators. Notably, the LBM Raman response is unobservable at room temperature, and it is turned on at higher temperature (>600 K) with a steep increase of Raman intensity. The observation suggests that the LBM vibration is strongly suppressed by molecules adsorbed on the graphene surface, but is activated as desorption occurs at high temperature.
We observed distinct interlayer shear mode Raman spectra for trilayer graphene with ABA and ABC stacking order. There are two rigid-plane shear-mode phonon branches in trilayer graphene. We found that ABA trilayers exhibit pronounced Raman response from the high-frequency shear branch, without any noticeable response from the low-frequency branch. In contrast, ABC trilayers exhibit no response from the high-frequency shear branch, but significant Raman response from the low-frequency branch. Such complementary behaviors of Raman shear modes can be explained by the distinct symmetry of the two trilayer allotropes. The strong stacking-order dependence was not found in the layer-breathing modes, and thus represents a unique characteristic of the shear modes
Reactions of Ge with S vapor, of interest as a potential approach for forming thin passivation layers on Ge surfaces, have been studied by photoelectron spectroscopy and Raman spectroscopy. Exposure of Ge(100) and Ge(111) to S drives the formation of Ge sulfide near-surface layers. At low temperatures, the reaction products comprise a thin GeS interlayer terminated by near-surface GeS. Above 400 °C, exposure to sulfur gives rise to single-phase GeS layers whose thickness increases with temperature. Arrhenius analysis of the GeS thickness yields an activation energy (0.63 ± 0.08) eV, close to the barrier that controls Ge oxidation by O radicals. XPS measurements after extended ambient exposure show a stable, ultrathin near-surface GeS without significant oxidation, indicating that Ge-sulfides may provide an effective surface passivation for Ge surfaces.
We have studied the self-heating of a large stack of Bi 2 Sr 2 CaCu 2 O 8+δ intrinsic Josephson junctions, of a configuration designed for THz generation. We find good qualitative agreement between direct thermoluminescent measurements of the device surface temperature and low-temperature scanning laser microscopy images. In particular, the two techniques both reveal a novel mode of thermal instability through the asymmetric nucleation of a small hot-spot near a corner/edge of the sample. This behavior conforms with a theoretical stability analysis, and the radius of the hot-spot is in excellent agreement with theoretical predictions, as is its growth with increasing bias current and bath temperature. Narrow hot-spots may offer a new possible means of enhancing the terahertz emission power from this type of device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.