Thinning specimens to electron transparency for electron microscopy analysis can be done by conventional (2-4 kV) argon ion milling or focused ion beam (FIB) lift-out techniques. Both these methods tend to leave "mottling" visible on thin specimen areas, and this is believed to be surface damage caused by ion implantation and amorphisation. A low energy (250-500 V) Argon ion polish has been shown to greatly improve specimen quality for crystalline silicon samples. Here we investigate the preparation of technologically important materials for nanoanalysis using conventional and lift-out methods followed by a low energy polish in a GentleMill™ low energy ion mill. We use a low energy, low angle (6-8°) ion beam to remove the surface damage from previous processing steps. We assess this method for the preparation of technologically important materials, such as steel, silicon and GaAs. For these materials the ability to create specimens from specific sites, and to be able to image and analyse these specimens with the full resolution and sensitivity of the STEM, allows a significant increase of the power and flexibility of nanoanalytical electron microscopy.
The complete genome sequences of 33 microviruses were determined from fecal samples collected from 14 Arizona-dwelling Gila monsters using high-throughput sequencing. These microviruses with genomes 4,383 to 6,782 nucleotides (nt) long were broadly distributed across the 14 samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.