Managing phosphorus bioaccessibility is critical for the bioremediation of hydrocarbons in calcareous soils. This paper explores how soil mineralogy interacts with a novel biostimulatory solution to both control phosphorus bioavailability and influence bioremediation. Two large bore infiltrators (1 m diameter) were installed at a PHC contaminated site and continuously supplied with a solution containing nutrients and an electron acceptor. Soils from eight contaminated sites were prepared and pretreated, analyzed pretrial, spiked with diesel, placed into nylon bags into the infiltrators, and removed after 3 months. From XAS, we learned that three principal phosphate phases had formed: adsorbed phosphate, brushite, and newberyite. All measures of biodegradation in the samples (in situ degradation estimates, mineralization assays, culturable bacteria, catabolic genes) varied depending upon the soil's phosphate speciation. Notably, adsorbed phosphate increased anaerobic phenanthrene degradation and bzdN catabolic gene prevalence. The dominant mineralogical constraints on community composition were the relative amounts of adsorbed phosphate, brushite, and newberyite. Overall, this study finds that total phosphate influences microbial community phenotypes whereas relative percentages of phosphate minerals influences microbial community genotype composition.
In situ aqueous solutions containing copper-ligand mixtures were measured at the Cu L-edge using X-ray absorption near edge structure (XANES) and with attenuated total reflectance infrared (ATR-FTIR) spectroscopies. Copper complexation with environmentally relevant ligands such as EDTA, citrate, and malate provided a bridge between spectroscopic studies and general environmental behavior and will allow for future study of complex environmental samples. XANES results show that the lowest unoccupied molecular orbital (LUMO) energy is governed by the ligand field strength and is related to Lewis acid/base properties of the ligand functional groups. Complementary ATR-FTIR studies confirmed the importance of water molecules in the structure of these Cu-ligand complexes and provided in-depth structural analysis to support the XANES data. Copper-malate is shown to have a 5/6-O-ring structure, and Cu-ethylenediaminetetraacetate has pentadentate coordination. Cu L-edge XANES also revealed direct Cu-N coordination in these aqueous solutions with amide functional groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.