Vehicle control by humans is possible because the central nervous system is capable of using visual information to produce complex sensorimotor actions. Drivers must monitor errors and initiate steering corrections of appropriate magnitude and timing to maintain a safe lane position. The perceptual mechanisms determining how a driver processes visual information and initiates steering corrections remain unclear. Previous research suggests two potential alternative mechanisms for responding to errors: (i) perceptual evidence (error) satisficing fixed constant thresholds (Threshold), or (ii) the integration of perceptual evidence over time (Accumulator). To distinguish between these mechanisms an experiment was conducted using a computer-generated steering correction paradigm. Drivers (N=20) steered towards an intermittently appearing 'road-line' that varied in position and orientation with respect to the driver's position and trajectory. One key prediction from a Threshold framework is a fixed absolute error response across conditions regardless of the rate of error development, whereas the Accumulator framework predicts that drivers would respond to larger absolute errors when the error signal develops at a faster rate. Results were consistent with an Accumulator framework, thus we propose that models of steering should integrate perceived control error over time in order to accurately capture human perceptual performance.
Both symbolic (digits) and non-symbolic (dots) numerals are spatially coded, with relatively small numbers being responded faster with a left key and large numbers being responded faster with a right key (spatial–numerical association of response codes [SNARC]). The idea of format independent SNARC seems to support the existence of a common system for symbolic and non-symbolic numerical representations, although evidence in the field is still mixed. The aim of the present study is to investigate whether symbolic and non-symbolic numerals interact in the SNARC effect when both information is simultaneously displayed. To do so, participants were presented with dice-like patterns, with digits being used instead of dots. In two separate magnitude classification tasks, participants had to respond either to the number of digits presented on the screen or to their numerical size. In the non-symbolic task, they had to judge whether the digits on the screen were more or less than three, irrespective of the numerical value of the digits. In the symbolic task, participants had to judge whether the digits on the screen were numerically smaller or larger than three, irrespective of the number of digits being present. The results show a consistent SNARC effect in the symbolic task and no effect in the non-symbolic one. Furthermore, congruency between symbolic and non-symbolic numerals did not modulate the response patterns, thus supporting the idea of independent representations and questioning some propositions of current theoretical accounts.
To steer a vehicle, humans must process incoming signals that provide information about their movement through the world. These signals are used to inform motor control responses that are appropriately timed and of the correct magnitude. However, the perceptual mechanisms determining how drivers process visual information remain unclear. Previous research has demonstrated that when steering toward a straight road-line, drivers accumulate perceptual evidence (error) over time to initiate steering action (Accumulator framework), rather than waiting for perceptual evidence to surpass time-independent fixed thresholds (Threshold framework). The more general case of steering around bends (with a requirement that the trajectory is adjusted to match the road curvature ahead) provides richer continuously varying information. The current experiment aims to establish whether the Accumulator framework provides a good description of human responses when steering toward curved road-lines. Using a computer-generated steering correction paradigm, drivers (N=11) steered toward intermittently appearing curved road-lines that varied in position and radius with respect to the driver’s trajectory. A Threshold framework predicted that steering responses would be of fixed magnitude and at fixed absolute errors across conditions regardless of the rate of error development. Conversely, the Accumulator framework predicted that drivers should respond to larger absolute errors when the error signal developed at a faster rate. Results were consistent with an Accumulator framework in a manner that supports previous investigations and the computational modelling literature. We propose that accumulation of perceptual evidence captures human behaviour in a variety of steering contexts that drivers face in the real world.
Both symbolic (digits) and non-symbolic (dots) numerals are spatially represented, with relatively small numbers being responded faster with a left key press and large numbers being responded faster with a right key press (Spatial-Numerical Association of Response Codes). The idea of a format independent SNARC seems to support the existence of a common system for symbolic and non-symbolic numerical representations, although evidence in the field is still mixed. The aim of the present study is to investigate whether symbolic and non-symbolic numerals interact in the SNARC effect when both information is presented simultaneously. To do so, participants were presented with dice-like patterns with digits being used instead of dots. In two separate magnitude classification tasks, participants had to respond either to the number of digits being present on the screen or to their numerical size. In the non-symbolic task, they had to judge whether the digits on the screen were more or less than three, irrespective of the numerical value of the digits. In the symbolic task, participants had to judge whether the digits on the screen were numerically smaller or larger than three, irrespective of the number of digits being present. The results show a consistent SNARC effect in the symbolic task and no effect in the non-symbolic one. More interestingly, congruency between symbolic and non-symbolic numerals did not modulate the response patterns, thus supporting the idea of independent representations and questioning some of the current theoretical accounts.
To steer a vehicle, humans must process incoming signals that provide information about their movement through the world. These signals are used to inform motor control responses that are appropriately timed and of the correct magnitude. However, the perceptual mechanisms determining how drivers process visual information remain unclear. Previous research has demonstrated that when steering toward a straight roadline, drivers accumulate perceptual evidence (error) over time to initiate steering action (Accumulator framework), rather than waiting for perceptual evidence to surpass time-independent fixed thresholds (Threshold framework). The more general case of steering around bends (with a requirement that the trajectory is adjusted to match the road curvature ahead) provides richer continuously varying information. The current experiment aims to establish whether the Accumulator framework provides a good description of human responses when steering toward curved road-lines. Using a computer-generated steering correction paradigm, drivers (N = 11) steered toward intermittently appearing curved road-lines that varied in position and radius with respect to the driver's trajectory. The Threshold framework predicted that steering responses would be of fixed magnitude and at fixed absolute errors across conditions regardless of the rate of error development. Conversely, the Accumulator framework predicted that drivers should respond to larger absolute errors when the error signal developed at a faster rate. Results were consistent with an Accumulator framework in a manner that supports previous investigations and the computational modeling literature. We propose that the accumulation of perceptual evidence captures human behavior in a variety of steering contexts that drivers face in the real world. Public Significance StatementDrivers do not respond to fixed positional errors; rather, positional error is accumulated over time to initiate an appropriate steering action. This finding is applicable when steering back onto straight and curved paths and suggests that drivers accumulate perceptual information regardless of the geometry of the target path.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.