Tubular solid-oxide fuel cells (t-SOFCs) fed directly with biogas, an equiproportioned mixture of CH 4 and CO 2 produced by fermentation of organic waste, are subject to nonuniform thermal stresses due to internal dry reforming in the anode entrance region coupled with structure exfoliation due to coking, resulting eventually in cell rupture. The integral t-SOFC is of practical interest, although many laboratory studies are conducted in differential button cells. Guided by mechanistic understanding and a robust thermodynamic model, the operating temperature and biogas feed composition were explored experimentally in order to enhance durability and performance of the t-SOFC. Thus, a temperature of 900 °C, a feed CH 4 /CO 2 ratio of 45/55, and a fuel utilization ≥25% were found to be optimal. The cell durability, performance, efficiency, and outlet gas composition at open-circuit voltage (OCV) as well as at different loads were found to be in accord with a thermodynamic analysis and mechanistic understanding based on a set of four independent overall reactions (ORs). It is shown that the OCV is independent of the chosen electrodic OR. In addition to single-tube experiments, a 5-tube SOFC pilot-unit was preliminarily tested as a step toward scale-up of this promising renewable energy technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.