Phosphorus (P) bioavailability often limits gasoline biodegradation in calcareous cold-region soils. One possible method to increase P bioavailability in such soils is the addition of citrate. Citrate addition at the field scale may increase hydrocarbon degradation by: (i) enhancing inorganic and organic P dissolution and desorption, (ii) increasing hydrocarbon bioavailability, and/or (iii) stimulating microbial activity. Alternatively, citrate addition may inhibit activity due to competitive effects on carbon metabolism. Using a field-scale in situ biostimulation study, we evaluated if citrate could stimulate gasoline degradation and what the dominant mechanism of this stimulation will be. Two large bore injectors were constructed at a site contaminated with gasoline, and a biostimulation solution of 11 mM MgSO, 1 mM HPO, and 0.08 mM HNO at pH 6.5 in municipal potable water was injected at ∼5000 L d for about 4 mo. Following this, 10 mM citric acid was incorporated into the existing biostimulation solution and the site continued to be stimulated for 8 mo. After citrate addition, the bioavailable P fraction in groundwater and soil increased. Iron(II) groundwater concentrations increased and corresponded to decreases in benzene, toluene, ethylbenzene, xylenes (BTEX) in groundwater, as well as a decrease in F1 in the soil saturated zone. Overall, citrate addition increased P bioavailability and may stimulate anaerobic microbial activity, resulting in accelerated anaerobic gasoline bioremediation in cold-region calcareous soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.