Background The breakfast meal often results in the largest postprandial hyperglycemic excursion in people with type 2 diabetes. Objective Our purpose was to investigate whether restricting carbohydrates at breakfast would be a simple and feasible strategy to reduce daily exposure to postprandial hyperglycemia. Design Adults with physician-diagnosed type 2 diabetes [n = 23; mean ± SD age: 59 ± 11 y; glycated hemoglobin: 6.7% ± 0.6%; body mass index (kg/m2): 31 ± 7] completed two 24-h isocaloric intervention periods in a random order. Participants consumed one of the following breakfasts: 1) a very-low-carbohydrate high-fat breakfast (LCBF; <10% of energy from carbohydrate, 85% of energy from fat, 15% of energy from protein) or 2) a breakfast with dietary guidelines–recommended nutrient profile (GLBF; 55% of energy from carbohydrate, 30% of energy from fat, 15% of energy from protein), with the same lunch and dinner provided. Continuous glucose monitoring was used to assess postprandial glucose responses over 24 h, and visual analog scales were used to assess ratings of hunger and fullness. Results The LCBF significantly reduced postprandial hyperglycemia after breakfast (P < 0.01) and did not adversely affect glycemia after lunch or dinner. As such, overall postprandial hyperglycemia (24-h incremental area under the glucose curve) and glycemic variability (mean amplitude of glycemic excursions) were reduced with the LCBF (24-h incremental area under the glucose curve: −173 ± 361 mmol/L; P = 0.03; mean amplitude of glycemic excursions: −0.4 ± 0.8 mmol/L · 24 h; P = 0.03) compared with the GLBF. Premeal hunger was lower before dinner with the LCBF than with the GLBF (P-interaction = 0.03). Conclusions A very-low-carbohydrate high-fat breakfast lowers postbreakfast glucose excursions. The effects of this simple strategy appear to be sufficient to lower overall exposure to postprandial hyperglycemia and improve glycemic variability. Longer-term interventions are warranted. This trial was registered at clinicaltrials.gov as NCT02982330.
Background: High-intensity interval training (HIIT) can improve several aspects of cardiometabolic health. Previous studies have suggested that adaptations to exercise training can be augmented with post-exercise milk or protein consumption, but whether this nutritional strategy can impact the cardiometabolic adaptations to HIIT in type 2 diabetes is unknown.Objective: To determine if the addition of a post-exercise milk or protein beverage to a high-intensity interval training (HIIT) intervention improves cardiometabolic health in individuals with type 2 diabetes.Design: In a proof-of-concept, double-blind clinical trial 53 adults with uncomplicated type 2 diabetes were randomized to one of three nutritional beverages (500 mL skim-milk, macronutrient control, or flavored water placebo) consumed after exercise (3 days/week) during a 12 week low-volume HIIT intervention. HIIT involved 10 X 1-min high-intensity intervals separated by 1-min low-intensity recovery periods. Two sessions per week were cardio-based (at ~90% of heart rate max) and one session involved resistance-based exercises (at RPE of 5–6; CR-10 scale) in the same interval pattern. Continuous glucose monitoring (CGM), glycosylated hemoglobin (HbA1c), body composition (dual-energy X-ray absorptiometry), cardiorespiratory fitness (trueV˙textO2textpeak), blood pressure, and endothelial function (%FMD) were measured before and after the intervention.Results: There were significant main effects of time (all p < 0.05) but no difference between groups (Interaction: all p > 0.71) for CGM 24-h mean glucose (−0.5 ± 1.1 mmol/L), HbA1c (−0.2 ± 0.4%), percent body fat (−0.8 ± 1.6%), and lean mass (+1.1 ± 2.8 kg). Similarly, trueV˙textO2textpeak (+2.5 ± 1.6 mL/kg/min) and %FMD (+1.4 ± 1.9%) were increased, and mean arterial blood pressure reduced (−6 ± 7 mmHg), after 12 weeks of HIIT (all p < 0.01) with no difference between beverage groups (Interaction: all p > 0.11).Conclusion: High-intensity interval training is a potent stimulus for improving several important metabolic and cardiovascular risk factors in type 2 diabetes. The benefits of HIIT are not augmented by the addition of post-exercise protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.