This report demonstrates that oncolytic measles virotherapy in combination with aPD-1 blockade significantly improves survival outcome in a syngeneic GBM model and supports the potential of clinical/translational strategies combining MV with αPD-1 therapy in GBM treatment.
The addition of antiangiogenic therapy to the standard-of-care treatment regimen for recurring glioblastoma has provided some clinical benefits while also delineating numerous caveats, prompting evaluation of the elicited alterations to the tumor microenvironment. Of critical importance, given the steadily increasing incorporation of immunotherapeutic approaches clinically, is an enhanced understanding of the interplay between angiogenic and immune response pathways within tumors. In the present study, the GL261 glioma mouse model was used to determine the effects of antiangiogenic treatment in an immune-competent host. Following weekly systemic administration of aflibercept, an inhibitor of vascular endothelial growth factor, tumor volume was assessed by magnetic resonance imaging and changes to the tumor microenvironment were determined. Treatment with aflibercept resulted in reduced tumor burden and increased survival compared with controls. Additionally, decreased vascular permeability and preservation of the integrity of tight junction proteins were observed. Treated tumors also displayed hallmarks of anti-angiogenic evasion, including marked upregulation of vascular endothelial growth factor expression and increased tumor invasiveness. Aflibercept was then administered in combination with a picornavirusbased antitumor vaccine and tumor progression was evaluated. This combination therapy significantly delayed tumor progression and extended survival beyond that observed for either therapy alone. As such, this work demonstrates the efficacy of combined antiangiogenic and immunotherapy approaches for treating established gliomas and provides a foundation for further evaluation of the effects of antiangiogenic therapy in the context of endogenous or vaccine-induced inflammatory responses.
The contribution of antigen-presenting cell (APC) types in generating CD8+ T cell responses in the central nervous system (CNS) is not fully defined, limiting the development of vaccines and understanding of immune-mediated neuropathology. Here, we generate a transgenic mouse that enables cell-specific deletion of the H-2Kb MHC class I molecule. By deleting H-2Kb on dendritic cells and macrophages, we compare the effect of each APC in three distinct models of neuroinflammation: picornavirus infection, experimental cerebral malaria, and a syngeneic glioma. Dendritic cells and macrophages both activate CD8+ T cell responses in response to these CNS immunological challenges. However, the extent to which each of these APCs contributes to CD8+ T cell priming varies. These findings reveal distinct functions for dendritic cells and macrophages in generating CD8+ T cell responses to neurological disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.