Triclosan, a widely used antibacterial agent, possesses potent activity against Staphylococcus aureus. This study reports on an investigation of the antibacterial target of triclosan in this pathogen. A strain of S. aureus overexpressing the enoyl-[acyl-carrier-protein] reductase (FabI), demonstrated by Western immunoblotting, gave rise to an increase in the MIC of triclosan, while susceptibilities to a range of unrelated antibacterials were unaffected. There are approximately 12 000 molecules of FabI per cell in mid-log phase growth. This number increased by approximately three- to four-fold in the S. aureus FabI overexpressor. Triclosan selectively inhibited the incorporation of [(14)C]acetate into TCA-precipitable product, an indicator of fatty acid biosynthesis. Furthermore, it inhibited de novo fatty acid biosynthesis in this organism. In vitro, triclosan inhibited recombinant, purified S. aureus FabI with an IC(50) of approximately 1 microM. The combination of these biochemical and genetic data provide further evidence that the mode of action of triclosan in S. aureus is via inhibition of FabI.
Potent nanomolar inhibitors of Staphylococcus aureus methionyl tRNA synthetase have been derived from a file compound high throughput screening hit. Optimized compounds show excellent antibacterial activity against staphylococcal and enterococcal pathogens, including strains resistant to clinical antibiotics. Compound 11 demonstrated in vivo efficacy in an S. aureus rat abscess infection model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.