In physical chemistry classrooms, mathematical and graphical representations are critical tools for reasoning about chemical phenomena. However, there is abundant evidence that to be successful in understanding complex thermodynamics topics, students must go beyond rote mathematical problem solving in order to connect their understanding of mathematical and graphical representations to the macroscopic and submicroscopic phenomena they represent. Though traditional curricular materials such as textbooks may provide little support for coordinating information across macroscopic, submicroscopic, and symbolic levels, instructor facilitation of classroom discussions offers a promising route towards supporting students' reasoning. Here, we report a case study of classroom reasoning in a POGIL (process-oriented guided inquiry learning) instructional context that examines how the class coordinated macroscopic, submicroscopic, and symbolic ideas through classroom discourse. Using an analytical approach based on Toulmin's model of argumentation and the inquiry-oriented discursive moves framework, we discuss the prevalence of macroscopic, submicroscopic and symbolic-level ideas in classroom reasoning and we discuss how instructor facilitation strategies promoted reasoning with macroscopic, submicroscopic, and symbolic levels of representation. We describe one sequence of instructor facilitation moves that we believe promoted translation across levels in whole class discussion.
Background: Process skills such as critical thinking and information processing are commonly stated outcomes for STEM undergraduate degree programs, but instructors often do not explicitly assess these skills in their courses. Students are more likely to develop these crucial skills if there is constructive alignment between an instructor's intended learning outcomes, the tasks that the instructor and students perform, and the assessment tools that the instructor uses. Rubrics for each process skill can enhance this alignment by creating a shared understanding of process skills between instructors and students. Rubrics can also enable instructors to reflect on their teaching practices with regard to developing their students' process skills and facilitating feedback to students to identify areas for improvement. Results: Here, we provide rubrics that can be used to assess critical thinking and information processing in STEM undergraduate classrooms and to provide students with formative feedback. As part of the Enhancing Learning by Improving Process Skills in STEM (ELIPSS) Project, rubrics were developed to assess these two skills in STEM undergraduate students' written work. The rubrics were implemented in multiple STEM disciplines, class sizes, course levels, and institution types to ensure they were practical for everyday classroom use. Instructors reported via surveys that the rubrics supported assessment of students' written work in multiple STEM learning environments. Graduate teaching assistants also indicated that they could effectively use the rubrics to assess student work and that the rubrics clarified the instructor's expectations for how they should assess students. Students reported that they understood the content of the rubrics and could use the feedback provided by the rubric to change their future performance. Conclusion:The ELIPSS rubrics allowed instructors to explicitly assess the critical thinking and information processing skills that they wanted their students to develop in their courses. The instructors were able to clarify their expectations for both their teaching assistants and students and provide consistent feedback to students about their performance. Supporting the adoption of active-learning pedagogies should also include changes to assessment strategies to measure the skills that are developed as students engage in more meaningful learning experiences. Tools such as the ELIPSS rubrics provide a resource for instructors to better align assessments with intended learning outcomes.
Recent science education reform efforts have emphasized scientific practices in addition to scientific knowledge. Less work has been done at the tertiary level to consider students' engagement in scientific practices. In this work, we consider physical chemistry students' engagement in argumentation and construction of causal explanations. Students in two POGIL physical chemistry classrooms were videotaped as they engaged in discourse while solving thermodynamics problems. Videos were transcribed and transcripts were analyzed using the Toulmin Argument Pattern (TAP). Arguments were then characterized using the modes of reasoning in a learning progression on chemical thinking (CTLP) (Sevian and Talanquer, 2014). Results showed that students used primarily relational reasoning, in which no causal explanation is generated, rather a single relationship between variables was used to justify a claim. We discuss all types of reasoning present in students' arguments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.