To improve system performance, modern operating systems (OSes) often undertake activities that require modification of virtual-to-physical page translation mappings. For example, the OS may migrate data between physical frames to defragment memory and enable superpages. The OS may migrate pages of data between heterogeneous memory devices. We refer to all such activities as page remappings. Unfortunately, page remappings are expensive. We show that translation coherence is a major culprit and that systems employing virtualization are especially badly affected by their overheads. In response, we propose hardware translation invalidation and coherence or HATRIC, a readily implementable hardware mechanism to piggyback translation coherence atop existing cache coherence protocols. We perform detailed studies using KVM-based virtualization, showing that HATRIC achieves up to 30% performance and 10% energy benefits, for per-CPU area overheads of 2%. We also quantify HATRIC's benefits on systems running Xen and find up to 33% performance improvements.
Processors and operating systems (OSes) support multiple memory page sizes. Superpages increase Translation Lookaside Buffer (TLB) hits, while small pages provide fine-grained memory protection. Ideally, TLBs should perform well for any distribution of page sizes. In reality, set-associative TLBs -- used frequently for their energy efficiency compared to fully-associative TLBs -- cannot (easily) support multiple page sizes concurrently. Instead, commercial systems typically implement separate set-associative TLBs for different page sizes. This means that when superpages are allocated aggressively, TLB misses may, counter intuitively, increase even if entries for small pages remain unused (and vice-versa). We invent MIX TLBs, energy-frugal set-associative structures that concurrently support all page sizes by exploiting superpage allocation patterns. MIX TLBs boost the performance (often by 10-30%) of big-memory applications on native CPUs, virtualized CPUs, and GPUs. MIX TLBs are simple and require no OS or program changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.