BACKGROUND Transgenic crops producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) are widely planted to manage agricultural insect pests. However, widespread adoption of Bt crops has led to the evolution of Bt resistance. The western corn rootworm, Diabrotica virgifera virgifera, is among the most serious pests of maize in the midwestern United States and is currently managed with Bt maize. To date, there is evidence of field‐evolved resistance to all Bt toxins used to manage this pest. While western corn rootworm resistance to Cry3Bb1, and the closely related mCry3A and eCry3.1Ab traits, is widely distributed within the Midwest, fewer cases of Cry34/35Ab1 resistance have been observed, and planting of Cry34/35Ab1 maize is one of the methods used to manage Cry3‐resistant rootworm. RESULTS We found that fields with high levels of root injury to Cry34/35Ab1 maize by western corn rootworm were associated with Cry34/35Ab1‐resistant western corn rootworm. Additionally, a population not associated with high levels of root injury was found to be resistant to Cry34/35Ab1. In all cases, populations that were resistant to Cry34/35Ab1 also were resistant to Cry3 traits. CONCLUSIONS Western corn rootworm resistance to Cry34/35Ab1 has continued to persist in the agricultural landscape and has likely increased. The presence of rootworm populations with resistance to all available Bt traits threatens the utility of current and future transgenic technologies to manage this pest. Decreased reliance on Cry34/35Ab1 and better use of integrated pest management will be essential to preserve Bt susceptibility in western corn rootworm. © 2019 Society of Chemical Industry
Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of corn in the United States. Transgenic corn expressing insecticidal proteins derived from the bacterium Bacillus thuringiensis (Bt) is an important tool used to manage rootworm populations. However, field-evolved resistance to Bt threatens this technology. In areas where resistance is present, resistant individuals may travel from one field to a neighboring field, spreading resistance alleles. An important question that remains to be answered is the extent to which greater-than-expected root injury (i.e., >1 node of injury) to Cry3Bb1 corn from western corn rootworm is associated with rootworm abundance, root injury, and levels of resistance in neighboring fields. To address this question, fields with a history of greater-than-expected injury to Cry3Bb1 corn (focal fields) and surrounding fields (< 2.2 km from focal fields) were examined to quantify rootworm abundance, root injury, and resistance to Cry3Bb1 corn. Additionally, use of Bt corn and soil insecticide use for the previous six years were quantified for each field. Resistance to Cry3Bb1 was present in all fields assayed, even though focal fields had grown more Cry3 corn and less non-Bt corn than surrounding fields. This finding implies that some movement of resistance alleles had occurred between focal fields and surrounding fields. Overall, our data suggest that resistance to Cry3Bb1 in the landscape has been influenced by both local rootworm movement and fieldlevel management tactics.
Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of maize in the United States and is an invasive pest in Europe. Maize is the only agricultural crop on which western corn rootworm larvae can survive and this insect requires two consecutive years of maize cultivation to complete its life cycle. Transgenic maize producing insecticidal proteins derived from the bacterium Bacillus thuringiensis (Bt) is often used to manage rootworm populations. The first Bt trait, Cry3Bb1, was introduced in 2003, but larval resistance to this toxin appeared in northeastern Iowa in 2009. Rootworm management occurs on a field-by-field basis, but adult rootworm may disperse among fields. It is known that growing consecutive years of Cry3Bb1 maize within a field can lead to resistance, but the relationship of the surrounding landscape to the development of resistance is unknown. Using geospatial tools and publicly available land-use data, we examined circular areas (buffers) surrounding fields that had previously experienced high levels of rootworm injury to Cry3Bb1 maize and rootworm resistance to Cry3Bb1 maize (problem fields). We calculated the proportion of area inside each buffer planted to maize continuously for 1-9 yr, and compared these values to those for randomly selected control points throughout the state. We also calculated the proportion of the state planted to maize for at least three consecutive years for 2003 through 2018, and its relationship with the annual value of maize. We found that areas surrounding problem fields had significantly more continuous maize compared to controls, with the most continuous maize within 1.6 km of problem fields. We also found that the cultivation of continuous maize in Iowa increased significantly between 2003 and 2018, and this was correlated with average annual price of maize. We hypothesize a scenario in which continuous cultivation of Cry3Bb1 maize in local landscapes, driven in part by the increased value of maize, facilitated selection for Cry3Bb1 resistance. These results suggest that land use in areas surrounding problem fields affect the rate of resistance evolution and approaches for resistance management can be enhanced by taking a landscape-level perspective.
Transgenic corn expressing insecticidal proteins derived from the bacterium Bacillus thuringiensis (Bt) is an important pest management tool. Western corn rootworm, Diabrotica virgifera virgifera LeConte, is a key pest of corn in the midwestern United States that has developed field-evolved resistance to all available Bt traits. The first Bt trait to be commercialized for management of rootworm was Cry3Bb1 in 2003, and field-evolved resistance appeared in 2009. In this study, we examined fields in counties where greater-than-expected injury to Cry3 (Cry3Bb1 or mCry3A) corn roots (>1 node) had previously been reported (problem counties) and counties where injury had not been reported (non-problem counties). Four to eight fields were sampled per county in 2015, 2016, and 2017 to quantify rootworm abundance, root injury, Cry3Bb1resistance, and rootworm management strategies. Rootworm abundance, root injury, and resistance to Cry3Bb1 did not differ between county types. Management tactics differed between county types, with problem counties growing more corn, using more soil insecticide, and growing more Cry34/35Ab1 corn. Additionally, a comparison of root injury to Bt and non-Bt corn within fields indicated that farmers derived an economic benefit from planting Bt corn to manage corn rootworm. Our results suggest that rootworm populations are similar between problem and non-problem counties in Iowa due to similar levels of selection pressure on Cry3 corn, but problem county fields have applied more management tactics due to previous rootworm issues in the area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.