The analysis of random vibration of a vehicle with hysteretic nonlinear suspension under road roughness excitation is a fundamental part of evaluation of a vehicle's dynamic features and design of its active suspension system. The effective analysis method of random vibration of a vehicle with hysteretic suspension springs is presented based on the pseudoexcitation method and the equivalent linearisation technique. A stable and efficient iteration scheme is constructed to obtain the equivalent linearised system of the original nonlinear vehicle system. The power spectral density of the vehicle responses (vertical body acceleration, suspension working space and dynamic tyre load) at different speeds and with different nonlinear levels of hysteretic suspension springs are analysed, respectively, by the proposed method. It is concluded that hysteretic nonlinear suspensions influence the vehicle dynamic characteristic significantly; the frequencyweighted root mean square values at the front and rear suspensions and the vehicle's centre of gravity are reduced greatly with increasing the nonlinear levels of hysteretic suspension springs, resulting in better ride comfort of the vehicle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.