In order to estimate the effect of Cu(0) particle size in SET-LRP, a comparative analysis of Cu(0)/ Me 6 -TREN-catalyzed polymerization of MA initiated with methyl 2-bromopropionate at 25 °C was performed in DMSO, a solvent that mediates the disproportionation of Cu(I)X, and in MeCN, a solvent in which Cu(I)X does not disproportionate Cu(I)X. Decreasing the Cu(0) particle size results in a marked increase in the apparent rate constant of propagation (k p app ). Decreasing the Cu(0) particle size from 425 to 0.05 µm (50 nm) increases the k p app by almost an order of magnitude. Regardless of the Cu(0) particle size used, in DMSO a perfect SET-LRP occurs with a first-order polymerization in growing species up to 100% conversion. However, in MeCN the polymerization is not first order in growing species. The results presented here demonstrate that, in addition to the disproportionation of Cu(I)X/L into Cu(0) and Cu(II)X 2 /L, the particle size of Cu(0) plays a strong role in the kinetics during the entire polymerization.
Cyclization of linear polymers by coupling end-groups together to form monocyclic polymers using the very fast Cu-catalyzed azide/alkyne cycloaddition (CuAAC) “click” reaction has been used for many polymer systems. However, the strategy based on the CuAAC methodology has not been guided by theory and relies on the very slow feed of polymer into a highly dilute reaction mixture of solvent and Cu catalyst. This leads to the production of monocyclic polymer in very low concentrations over long periods of time (>10 h) and at high temperatures (>100 °C). In this work we use the Jacobson−Stockmayer theory to predict the % monocyclic polystyrene (c-PSTY) in a one-pot reaction at 25 °C and find from an empirical relationship based on experimental diffusion-controlled rate coefficients for cyclization and condensation of α,ω-polymer chains that the Jacobson−Stockmayer theory is applicable for the CuAAC reaction. This means the % monocyclic can be predicted from theory and is independent of reaction rate parameters (such as catalytic concentration and temperature) and only dependent on polymer concentration. Given this quantitative knowledge, we investigated the effect of l-PSTY concentration, temperature, feed rate, Cu(I)Br concentration, and linear-PSTY molecular weight to find the optimum conditions for the synthesis of monocyclic polymers. It was found that for feed rates greater than or equal to the reaction rate high % monocyclic polymers could be formed. Our strategy allowed us to produce c-PSTY (with 51 monomer units) with high purity (>95%) at a concentration of 1.85 × 10−3 M in less than 9 min at 25 °C. This is the highest concentration, shortest time, and lowest temperature, to our knowledge, that anyone has used to obtain macrocycles in high purity by the CuAAC methodology. It also allowed us to develop strategies to produce high % monocyclic from parent l-PSTY with higher molecular weights.
High activation of polystyrene with bromine end groups (PSTY-Br) to their incipient radicals occurred in the presence of Cu(I)Br, Me 6 TREN, and DMSO solvent. These radicals were then trapped by nitroxide species leading to coupling reactions between PSTY-Br and nitroxides that were ultrafast and selective in the presence of a diverse range of functional groups. The nitroxide radical coupling (NRC) reactions have the attributes of a "click" reaction with near quantitative yields of product formed, but through the reversibility of this reaction, it has the added advantage of permitting the exchange of chemical functionality on macromolecules. Conditions were chosen to facilitate the disproportionation of Cu(I)Br to the highly activating nascent Cu(0) and deactivating Cu(II)Br 2 in the presence of DMSO solvent and Me 6 TREN ligand. NRC at room temperature gave near quantitative yields of macromolecular coupling of low molecular weight polystyrene with bromine chain-ends (PSTY-Br) and nitroxides in under 7 min even in the presence of functional groups (e.g., -, -OH, -COOH, -NH 2 , =O). Utilization of the reversibility of the NRC reaction at elevated temperatures allowed the exchange of chain-end groups with a variety of functional nitroxide derivatives. The robustness and orthogonality of this NRC reaction were further demonstrated using the Cu-catalyzed azide/alkyne "click" (CuAAC) reactions, in which yields greater than 95% were observed for coupling between PSTY-N 3 and a PSTY chain first trapped with an alkyne functional TEMPO (PSTY-TEMPO-).
Herein we report the first example of the controlled synthesis of linear and hyperbranched copolymers of 2-methylene-1,3-dioxepane (MDO) with functional vinyl monomers to deliver a range of functional, degradable polymers by reversible deactivation radical polymerization. The copolymerization was able to be tuned to vary the incorporation of degradable segments to create degradable materials with predictable molar mass, low dispersity values while also featuring side-chain functionality. The formation of nanoparticles by the addition of divinyladipate to form degradable hyperbranched copolymers was proven by DLS and TEM analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.