Fibrosis occurs when there is an imbalance in extracellular matrix (ECM) deposition and degradation. Excessive ECM deposition results in scarring and thickening of the affected tissue, and interferes with tissue and organ homeostasis – mimicking an exaggerated “wound healing” response. Many transforming growth factor-β (TGF-β) ligands are potent drivers of ECM deposition, and additionally, have a natural affinity for the ECM, creating a concentrated pool of pro-fibrotic factors at the site of injury. Consequently, TGF-β ligands are upregulated in many human fibrotic conditions and, as such, are attractive targets for fibrosis therapy. Here, we will discuss the contribution of TGF-β proteins in the pathogenesis of fibrosis, and promising anti-fibrotic approaches that target TGF-β ligands.
Smad3/Akt/mTOR/S6K/S6RP signaling plays a critical role in follistatin-mediated muscle growth that operates independently of myostatin-driven mechanisms.
Background: Cumulin is a newly identified heterodimeric member of the TGF- family. Results: Mature cumulin potently stimulates granulosa cell signaling and function, whereas pro-cumulin promotes oocyte quality. Conclusion: Formation of cumulin and its potent actions are likely to be central to oocyte paracrine signaling and mammalian fecundity. Significance: The discovery of cumulin provides unique opportunities to improve female fertility in mammals.
In models of cancer cachexia, inhibiting type IIB activin receptors (ActRIIBs) reverse muscle wasting and prolongs survival, even with continued tumor growth. ActRIIB mediates signaling of numerous TGF-β proteins; of these, we demonstrate that activins are the most potent negative regulators of muscle mass. To determine whether activin signaling in the absence of tumor-derived factors induces cachexia, we used recombinant serotype 6 adeno-associated virus (rAAV6) vectors to increase circulating activin A levels in C57BL/6 mice. While mice injected with control vector gained ~10% of their starting body mass (3.8±0.4 g) over 10 wk, mice injected with increasing doses of rAAV6:activin A exhibited weight loss in a dose-dependent manner, to a maximum of -12.4% (-4.2±1.1 g). These reductions in body mass in rAAV6:activin-injected mice correlated inversely with elevated serum activin A levels (7- to 24-fold). Mechanistically, we show that activin A reduces muscle mass and function by stimulating the ActRIIB pathway, leading to deleterious consequences, including increased transcription of atrophy-related ubiquitin ligases, decreased Akt/mTOR-mediated protein synthesis, and a profibrotic response. Critically, we demonstrate that the muscle wasting and fibrosis that ensues in response to excessive activin levels is fully reversible. These findings highlight the therapeutic potential of targeting activins in cachexia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.