Bacterial biosynthesis of lysine has come under increased scrutiny as a target for novel antibacterial agents as it provides lysine for protein synthesis and both lysine and meso-diaminopimelate for construction of the bacterial peptidoglycan cell wall. In this Highlight article we review recent advances in the validation of antibiotic targets, studies of the enzymes of the lysine biosynthetic pathway and development of inhibitors of these enzymes.
Metabolic reprogramming toward aerobic glycolysis unavoidably induces methylglyoxal (MG) formation in cancer cells. MG mediates the glycation of proteins to form advanced glycation end products (AGEs). We have recently demonstrated that MG-induced AGEs are a common feature of breast cancer. Little is known regarding the impact of MG-mediated carbonyl stress on tumor progression. Breast tumors with MG stress presented with high nuclear YAP, a key transcriptional co-activator regulating tumor growth and invasion. Elevated MG levels resulted in sustained YAP nuclear localization/activity that could be reverted using Carnosine, a scavenger for MG. MG treatment affected Hsp90 chaperone activity and decreased its binding to LATS1, a key kinase of the Hippo pathway. Cancer cells with high MG stress showed enhanced growth and metastatic potential in vivo. These findings reinforce the cumulative evidence pointing to hyperglycemia as a risk factor for cancer incidence and bring renewed interest in MG scavengers for cancer treatment.DOI:
http://dx.doi.org/10.7554/eLife.19375.001
Bacillus anthracis is a Gram-positive spore-forming bacterium that causes anthrax. With the increased threat of anthrax in biowarfare, there is an urgent need to characterize new antimicrobial targets from B. anthracis. One such target is dihydrodipicolinate synthase (DHDPS), which catalyzes the committed step in the pathway yielding meso-diaminopimelate and lysine. In this study, we employed CD spectroscopy to demonstrate that the thermostability of DHDPS from B. anthracis (Ba-DHDPS) is significantly enhanced in the presence of the substrate, pyruvate. Analytical ultracentrifugation studies show that the tetramer-dimer dissociation constant of the enzyme is 3-fold tighter in the presence of pyruvate compared with the apo form. To examine the significance of this substrate-mediated stabilization phenomenon, a dimeric mutant of Ba-DHDPS (L170E/ G191E) was generated and shown to have markedly reduced activity compared with the wild-type tetramer. This demonstrates that the substrate, pyruvate, stabilizes the active form of the enzyme. We next determined the high resolution (2.15 Å ) crystal structure of Ba-DHDPS in complex with pyruvate (3HIJ) and compared this to the apo structure (1XL9). Structural analyses show that there is a significant (91 Å 2 ) increase in buried surface area at the tetramerization interface of the pyruvatebound structure. This study describes a new mechanism for stabilization of the active oligomeric form of an antibiotic target from B. anthracis and reveals an "Achilles heel" that can be exploited in structure-based drug design.
The Plasmodium proteasome
represents a potential
antimalarial drug target for compounds with activity against multiple
life cycle stages. We screened a library of human proteasome inhibitors
(peptidyl boronic acids) and compared activities against purified P. falciparum and human 20S proteasomes. We chose four hits
that potently inhibit parasite growth and show a range of selectivities
for inhibition of the growth of P. falciparum compared
with human cell lines. P. falciparum was selected
for resistance in vitro to the clinically used
proteasome inhibitor, bortezomib, and whole genome sequencing was
applied to identify mutations in the proteasome β5 subunit.
Active site profiling revealed inhibitor features that enable retention
of potent activity against the bortezomib-resistant line. Substrate
profiling reveals P. falciparum 20S proteasome active
site preferences that will inform attempts to design more selective
inhibitors. This work provides a starting point for the identification
of antimalarial drug leads that selectively target the P.
falciparum proteasome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.