A systematic study of the ambient noise in the shallow coastal waters of north-eastern New Zealand shows large temporal variability in acoustic power levels between seasons, moon phase and the time of day. Ambient noise levels were highest during the new moon and the lowest during the full moon. Ambient noise levels were also significantly higher during summer and lower during winter. Bandpass filtering (700-2,000 Hz and 2-15 kHz), combined with snap counts and data from other studies show that the majority of the sound intensity increases could be attributed to two organisms: the sea urchin and the snapping shrimp. The increased intensity of biologically produced sound during dusk, new moon and summer could enhance the biological signature of a reef and transmit it further offshore. Ambient noise generated from the coast, especially reefs, has been implicated as playing a role in guiding pelagic post-larval fish and crustaceans to settlement habitats. Determining a causal link between temporal increases in ambient noise and higher rates of settlement of reef fish and crustaceans would provide support for the importance of ambient underwater sound in guiding the settlement of these organisms.
Summary
Diversity measurement techniques can present logistical and financial obstacles to conservation efforts. Ecoacoustics has recently emerged as a promising solution to these issues, providing a mechanism for measuring diversity using acoustic indices, which have proven to be beneficial in terrestrial habitats. This study investigates the application of acoustic measures as a tool for quick and effective marine diversity monitoring via direct, in situ comparison of ecoacoustics indices with species assemblage diversity measures from temperate rocky reefs.
Acoustic recordings and visual surveys of reef fish abundance were collected at nine sites in north‐eastern New Zealand. Three ecoacoustic indices originally developed for terrestrial use were then compared to three species assemblage diversity measures and compared using Pearson correlations. Additionally, four criteria for successful ecoacoustic indices were developed and tested as a means of standardizing future evaluation and use of acoustic indices: (i) positive correlations between species diversity and ecoacoustic indices in relevant frequency ranges, (ii) robustness to changes in spectral resolution, (iii) robustness to the presence of natural noise interference (i.e. wind) and (iv) robustness to the presence of anthropogenic noise.
Acoustic Complexity Index (ACI) was significantly correlated with Pielou's Evenness (J′) and Shannon's index (H′). Neither Acoustic Richness (AR) nor ACI was impacted by changes in spectral resolution, but values of the Acoustic Entropy Index (H) increased significantly between fast Fourier transformation (FFT) sizes 512 and 1024. H was consistently positively correlated with both H′ and estimated number of species (S) above a spectral resolution of c. 140·6 Hz (FFT size 1024). Wind did not affect any of the acoustic indices. As anthropogenic noise was included in these investigations, both ACI and H were considered robust to its presence.
While AR failed to meet all four criteria for a successful ecoacoustic indices, both ACI and H appeared to be appropriate for use on temperate reefs. In a time of accelerated global diversity loss, these two ecoacoustic indices show strong potential for use as efficient, non‐invasive marine diversity measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.