We propose a simplified classification for congenital fibular deficiency based on the clinical status of the foot and the magnitude of limb shortening as a percentage of the contralateral limb on radiographs. This classification may be effectively applied in infancy to allow the physician and family to anticipate the extent of deformity at maturity and to estimate the amount of treatment required to reconstruct this limb deformity. This system more accurately predicted the management of patients with fibular deficiency who were managed at our institution over the past three decades .
Background: Accurate pedicle screw placement is critical to surgically correct pediatric high-grade spondylolisthesis (HGS). The recent advent of robotics coupled with computer-assisted navigation (RAN) may represent a novel option to improve surgical outcomes of HGS, secondary to enhanced pedicle screw placement safety. This series presents the HGS-RAN technique adopted by our site, describing its surgical outcomes and feasibility. Methods: Consecutive patients with a diagnosis of HGS (Meyerding grade III to V), operated on using RAN from 2019 to 2020 at a single-center were reviewed. Demographics, screw accuracy, sagittal L5-S1 parameters, complications, and perioperative outcomes were described. All patients were treated with instrumentation, decompression, posterior lumbar interbody fusion, and reduction. Robotic time included anatomic registration to end of screw placement. Screw accuracy-defined as a screw placed safely within the planned intrapedicular trajectory-was characterized by the Gertzbein-Robbins system for patients with additional 3-dimensional imaging. Results: Ten HGS patients, with an average age of 13.7 years old, were included in the series. All 62 screws were placed without neurological deficit or complication. Seven patients had additional 3-dimensional imaging to assess screw accuracy (42 of 62 screws). One hundred percent of screws were placed safely with no pedicle breaches (Gertzbein-Robbins-grade A). Thirty screws (48%) were placed through separate incisions that were percutaneous/transmuscular and 32 screws (52%) were inserted through the main incision. There were statistically significant improvements in L5 slippage (P = 0.002) and lumbosacral angle (P = 0.002), reflecting successful HGS correction. The total median operative time was 324 minutes with the robotic usage time consuming a median of 72 minutes. Median estimated blood loss was 150 mL, and length-of-stay was a median 3 days. Conclusions: This case-series demonstrates that RAN represents a viable option for HGS repair, indicated by high screw placement accuracy, safety, and L5-S1 slippage correction. Surgeons looking to adopt an emerging technique to enhance safety and correction of pediatric HGS should consider the RAN platform. Level of Evidence: Level IV-therapeutic study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.