The exploration of 11beta-HSD1 inhibitors continues, as a number of structural classes have been reported by several pharmaceutical companies over the past 16 months. Current clinical trials will ultimately shed light on the feasibility of 11beta-HSD1 inhibitors as pharmaceutical agents for the various components of metabolic syndrome.
Aryl carboxamides are useful structural units found in several biologically active compounds. Unlike their benzoic acid counterparts, fluorinated versions of naphthoic acids are relatively unknown. In connection with a recent project, we needed viable syntheses of several mono- and difluorinated naphthoic acids. Herein we describe the synthesis of 5-, 6-, 7-, and 8-fluoro-1-naphthalenecarboxylic acids and 5,7-, 5,8-, 6,7-, and 4,5-difluoro-1-naphthalenecarboxylic acids. The 5-fluoro derivative 1was obtained from the corresponding 5-bromo compound via electrophilic fluorination of the lithio-intermediate. The rest of the monofluoro (2, 3, and 4) and the difluoro acids (5, 6, and 7) were prepared by a new, general route which entailed the elaboration of commercial fluorinated phenylacetic acids to 2-(fluoroaryl)glutaric acids with differential ester groups; selective hydrolysis to a mono acid, intramolecular Friedel-Crafts cyclization, and aromatization furnished the target structures. An alternative process to assemble a naphthalene skeleton is also presented for the difluoro acids 5 and 6. Finally, 4,5-difluoro-1-naphthalenecarboxylic acid (8) was prepared expeditiously from 1,8-diaminonaphthalene by adapting classical reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.