Protein aggregation is a complex process resulting in the formation of heterogeneous mixtures of aggregate populations that are closely linked to neurodegenerative conditions, such as Alzheimer’s disease. Here, we find that soluble aggregates formed at different stages of the aggregation process of amyloid beta (Aβ42) induce the disruption of lipid bilayers and an inflammatory response to different extents. Further, by using gradient ultracentrifugation assay, we show that the smaller aggregates are those most potent at inducing membrane permeability and most effectively inhibited by antibodies binding to the C-terminal region of Aβ42. By contrast, we find that the larger soluble aggregates are those most effective at causing an inflammatory response in microglia cells and more effectively inhibited by antibodies targeting the N-terminal region of Aβ42. These findings suggest that different toxic mechanisms driven by different soluble aggregated species of Aβ42 may contribute to the onset and progression of Alzheimer’s disease.
Protein aggregation and abnormal lipid homeostasis are both implicated in neurodegeneration through unknown mechanisms. Here we demonstrate that aggregate-membrane interaction is critical to induce a form of cell death called ferroptosis. Importantly, the aggregate-membrane interaction that drives ferroptosis depends both on the conformational structure of the aggregate, as well as the oxidation state of the lipid membrane. We generated human stem cell-derived models of synucleinopathy, characterized by the intracellular formation of α-synuclein aggregates that bind to membranes. In human iPSC-derived neurons with SNCA triplication, physiological concentrations of glutamate and dopamine induce abnormal calcium signaling owing to the incorporation of excess α-synuclein oligomers into membranes, leading to altered membrane conductance and abnormal calcium influx. α-synuclein oligomers further induce lipid peroxidation. Targeted inhibition of lipid peroxidation prevents the aggregate-membrane interaction, abolishes aberrant calcium fluxes, and restores physiological calcium signaling. Inhibition of lipid peroxidation, and reduction of iron-dependent accumulation of free radicals, further prevents oligomer-induced toxicity in human neurons. In summary, we report that peroxidation of polyunsaturated fatty acids underlies the incorporation of β-sheet-rich aggregates into the membranes, and that additionally induces neuronal death. This suggests a role for ferroptosis in Parkinson’s disease, and highlights a new mechanism by which lipid peroxidation causes cell death.
Despite the wealth of genomic and transcriptomic data in Parkinson's disease (PD), the initial molecular events are unknown. Using LD score regression analysis, we show significant enrichment in PD heritability within regulatory sites for LPS-activated monocytes and that TLR4 expression is highest within human substantia nigra, the most affected brain region, suggesting a role for TLR4 inflammatory responses. We then performed extended incubation of cells with physiological concentrations of small alpha-synuclein oligomers observing the development of a TLR4-dependent sensitized inflammatory response with time, including TNF-α production. ROS and cell death in primary neuronal cultures were significantly reduced by TLR4 antagonists revealing that an indirect inflammatory mechanism involving cytokines produced by glial cells makes a major contribution to neuronal death. Prolonged exposure to low levels of alpha-synuclein oligomers sensitizes TLR4 responsiveness in astrocytes and microglial, explaining how they become pro-inflammatory, and may be an early causative event in PD.
Soluble aggregates of amyloid-β (Aβ) have been associated with neuronal and synaptic loss in Alzheimer’s disease (AD). However, despite significant recent progress, the mechanisms by which these aggregated species contribute to disease progression are not fully determined. As the analysis of human cerebrospinal fluid (CSF) provides an accessible window into the molecular changes associated with the disease progression, we characterised soluble aggregates present in CSF samples from individuals with AD, mild cognitive impairment (MCI) and healthy controls using a range of sensitive biophysical methods. We used super-resolution imaging and atomic force microscopy to characterise the size and structure of the aggregates present in CSF and correlate this with their ability to permeabilise lipid membranes and induce an inflammatory response. We found that these aggregates are extremely heterogeneous and exist in a range of sizes, varying both structurally and in their mechanisms of toxicity during the disease progression. A higher proportion of small aggregates of Aβ that can cause membrane permeabilization are found in MCI CSF; in established AD, a higher proportion of the aggregates were larger and more prone to elicit a pro-inflammatory response in glial cells, while there was no detectable change in aggregate concentration. These results show that large aggregates, some longer than 100 nm, are present in the CSF of AD patients and suggest that different neurotoxic mechanisms are prevalent at different stages of AD. Electronic supplementary material The online version of this article (10.1186/s40478-019-0777-4) contains supplementary material, which is available to authorized users.
Background: The incidence of esophageal adenocarcinoma (EAC) is rapidly rising and has a 5-year survival rate of <20%. Beyond TNM (tumorenodeemetastasis) staging, no reliable risk stratification tools exist and no large-scale studies have profiled circulating tumor DNA (ctDNA) at relapse in EAC. Here we analyze the prognostic potential of ctDNA dynamics in EAC, taking into account clonal hematopoiesis with indeterminate potential (CHIP). Patients and methods: A total of 245 samples from 97 patients treated with neoadjuvant chemotherapy and surgery were identified from the prospective national UK Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) consortium data set. A pan-cancer ctDNA panel comprising 77 genes was used. Plasma and peripheral blood cell samples were sequenced to a mean depth of 7082Â (range 2196-28 524) and ctDNA results correlated with survival. Results: Characteristics of the 97 patients identified were as follows: 83/97 (86%) male, median age 68 years (SD 9.5 years), 100% cT3/T4, 75% cNþ. EAC-specific drivers had higher variant allele fractions than passenger mutations. Using stringent quality criteria 16/79 (20%) were ctDNA positive following resection; recurrence was observed in 12/16 (75%) of these. As much as 78/97 (80%) had CHIP analyses that enabled filtering for CHIP variants, which were found in 18/78 (23%) of cases. When CHIP was excluded, 10/63 (16%) patients were ctDNA positive and 9/10 of these (90%) recurred. With correction for CHIP, median cancer-specific survival for ctDNA-positive patients was 10.0 months versus 29.9 months for ctDNA-negative patients (hazard ratio 5.55, 95% confidence interval 2.42-12.71; P ¼ 0.0003). Similar outcomes were observed for disease-free survival. Conclusions: We demonstrate in a large, national, prospectively collected data set that ctDNA in plasma following surgery for EAC is prognostic for relapse. Inclusion of peripheral blood cell samples can reduce or eliminate false positives from CHIP. In future, post-operative ctDNA could be used to risk stratify patients into high-and low-risk groups for intensification or de-escalation of adjuvant chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.