The endocannabinoid system (ECS) plays a diverse role in human physiology ranging from the regulation of mood and appetite to immune modulation and the response to pain. Drug development that targets the cannabinoid receptors (CB and CB) has been explored; however, success in the clinic has been limited by the psychoactive side effects associated with modulation of the neuronally expressed CB that are enriched in the CNS. CB, however, are expressed in peripheral tissues, primarily in immune cells, and thus development of CB-selective drugs holds the potential to modulate pain among other indications without eliciting anxiety and other undesirable side effects associated with CB activation. As part of a collaborative effort among industry and academic laboratories, we performed a high-throughput screen designed to discover selective agonists or positive allosteric modulators (PAMs) of CB. Although no CB PAMs were identified, 167 CB agonists were discovered here, and further characterization of four select compounds revealed two with high selectivity for CB versus CB. These results broaden drug discovery efforts aimed at the ECS and may lead to the development of novel therapies for immune modulation and pain management with improved side effect profiles.
The recent development of a Hepatitis C virus (HCV) infectious virus cell culture model system has facilitated the development of whole-virus screening assays which can be used to interrogate the entire virus life cycle. Here, we describe the development of an HCV growth assay capable of identifying inhibitors against all stages of the virus life cycle with assay throughput suitable for rapid screening of large-scale chemical libraries. Novel features include, 1) the use of an efficiently-spreading, full-length, intergenotypic chimeric reporter virus with genotype 1 structural proteins, 2) a homogenous assay format compatible with miniaturization and automated liquid-handling, and 3) flexible assay end-points using either chemiluminescence (high-throughput screening) or Cellomics ArrayScan™ technology (high-content screening). The assay was validated using known HCV antivirals and through a large-scale, high-throughput screening campaign that identified novel and selective entry, replication and late-stage inhibitors. Selection and characterization of resistant viruses provided information regarding inhibitor target and mechanism. Leveraging results from this robust whole-virus assay represents a critical first step towards identifying inhibitors of novel targets to broaden the spectrum of antivirals for the treatment of HCV.
High-performance liquid chromatography (HPLC) biogram methodology is a powerful pharmaceutical screening hit confirmation strategy that couples analytical HPLC data with functional bioassay data. It is used primarily for screening hit chemical validation and triaging in support of early phase discovery programs and enables further investigation of the source of bioactivity in screening hits. The process combines semi-preparative separation technologies, automated compound handling and distribution, high-throughput biological screening, and informatics tools. The final output is an HPLC retention time versus bioactivity graphical overlay report. In this manner, biograms allow the analyst to determine which component in the sample is responsible for the biological activity, enabling decision making toward chemotype selection and prioritization from a pool of potential candidates. Another powerful aspect of the biogram assay lies in its utility in investigating biological activity in atypical samples, such as degraded samples or mixtures, for detection of minor active impurities or in addressing lot-to-lot activity discrepancies for a given test compound. Biograms are employed to track, isolate, and identify the source of biological activity in such samples, often yielding important information for program decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.