Boundary-layer bleed has conventionally been used to control separation due to shock wave/boundary-layer interactions within supersonic engine inlets. However, bleed systems result in a loss of captured mass flow, incurring higher drag and, ultimately, lower propulsion system efficiency. Microramp sub-boundary-layer vortex generators arranged in a spanwise array have been proposed in the past as a form of flow-control methodology for shock wave/ boundary-layer interactions. Experiments have been conducted herein at Mach 1.4 to characterize flow details of such devices and obtain quantitative measurements of their ability to control the interaction of a normal shock with a turbulent boundary layer. The flowfield was analyzed using schlieren photography, surface oil flow visualization, pressure-sensitive paint, and particle image velocimetry. An array of three microramps, for which the height was scaled to 36% of the incoming boundary-layer thickness, was placed ahead of the normal shock interaction. It was demonstrated that the microramps did entrain higher-momentum fluid into the boundary layer, which improved boundary-layer health. Specifically, the incompressible displacement thickness, momentum thickness, and shape factor were decreased, and the skin friction coefficient was increased, for the shock wave/boundary-layer interaction with the microramp array relative to the no-array case.
During cryopreservation, ice forms in the extracellular space resulting in freezing-induced deformation of the tissue, which can be detrimental to the extracellular matrix (ECM) microstructure. Meanwhile, cells dehydrate through an osmotically driven process as the intracellular water is transported to the extracellular space, increasing the volume of fluid for freezing. Therefore, this study examines the effects of cellular presence on tissue deformation and investigates the significance of intracellular water transport and cell-ECM interactions in freezing-induced cell-fluid-matrix interactions. Freezing-induced deformation characteristics were examined through cell image deformetry (CID) measurements of collagenous engineered tissues embedded with different concentrations of MCF7 breast cancer cells versus microspheres as their osmotically inactive counterparts. Additionally, the development of a biophysical model relates the freezing-induced expansion of the tissue due to the cellular water transport and the extracellular freezing thermodynamics for further verification. The magnitude of the freezing-induced dilatation was found to be not affected by the cellular water transport for the cell concentrations considered; however, the deformation patterns for different cell concentrations were different suggesting that cell-matrix interactions may have an effect. It was therefore determined that intracellular water transport during freezing was insignificant at the current experimental cell concentrations; however, it may be significant at concentrations similar to native tissue. Finally, the cell-matrix interactions provided mechanical support on the ECM to minimize the expansion regions in the tissues during freezing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.