Background Concerns regarding potential neurological complications of COVID-19 are being increasingly reported, primarily in small series. Larger studies have been limited by both geography and specialty. Comprehensive characterisation of clinical syndromes is crucial to allow rational selection and evaluation of potential therapies. The aim of this study was to investigate the breadth of complications of COVID-19 across the UK that affected the brain. Methods During the exponential phase of the pandemic, we developed an online network of secure rapid-response case report notification portals across the spectrum of major UK neuroscience bodies, comprising the Association of British Neurologists (ABN), the British Association of Stroke Physicians (BASP), and the Royal College of Psychiatrists (RCPsych), and representing neurology, stroke, psychiatry, and intensive care. Broad clinical syndromes associated with COVID-19 were classified as a cerebrovascular event (defined as an acute ischaemic, haemorrhagic, or thrombotic vascular event involving the brain parenchyma or subarachnoid space), altered mental status (defined as an acute alteration in personality, behaviour, cognition, or consciousness), peripheral neurology (defined as involving nerve roots, peripheral nerves, neuromuscular junction, or muscle), or other (with free text boxes for those not meeting these syndromic presentations). Physicians were encouraged to report cases prospectively and we permitted recent cases to be notified retrospectively when assigned a confirmed date of admission or initial clinical assessment, allowing identification of cases that occurred before notification portals were available. Data collected were compared with the geographical, demographic, and temporal presentation of overall cases of COVID-19 as reported by UK Government public health bodies.
Background: Cerebral ischaemia initiates an inflammatory response in the brain and periphery. We assessed the relationship between peak values of plasma interleukin-6 (IL-6) in the first week after ischaemic stroke, with measures of stroke severity and outcome.
Objectives: The cytokine interleukin (IL)-1 mediates ischaemic brain damage in rodents. The endogenous, highly selective, IL-1 receptor antagonist (IL-1ra) protects against ischaemic cerebral injury in a range of experimental settings, and IL-1ra causes a marked reduction of cell death when administered peripherally or at a delay in transient cerebral ischaemia. We report here the first randomised, double blind, placebo controlled trial of recombinant human IL-1ra (rhIL-1ra) in patients with acute stroke. Methods: Patients within 6 hours of the onset of symptoms of acute stroke were randomised to rhIL-1ra or matching placebo. Test treatment was administered intravenously by a 100 mg loading dose over 60 seconds, followed by a 2 mg/kg/h infusion over 72 h. Adverse events and serious adverse events were recorded for up to 3 months, serial blood samples were collected for biological markers up to 3 months, and 5-7 day brain infarct volume was measured by computed tomography. Results: No adverse events were attributed to study treatment among 34 patients randomised. Markers of biological activity, including neutrophil and total white cell counts, C reactive protein, and IL-6 concentrations, were lower in rhIL-1ra treated patients. Among patients with cortical infarcts, clinical outcomes at 3 months in the rhIL-1ra treated group were better than in placebo treated. Conclusions: These data suggest that rhIL-1ra is safe and well tolerated in acute stroke. In addition, rhIL1ra exhibited biological activity that is relevant to the pathophysiology and clinical outcome of ischaemic stroke. Our findings identify rhIL-1ra as a potential new therapeutic agent for acute stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.