Over the period 2014-2016, the number of nonnative brown trout (Salmo trutta) captured during routine monitoring in the Lees Ferry reach of the Colorado River, downstream of Glen Canyon Dam, began increasing. Management agencies and stakeholders have questioned whether the increase in brown trout in the Lees Ferry reach represents a threat to the endangered humpback chub (Gila cypha), to the rainbow trout (Oncorhynchus mykiss) sport fishery, or to other resources of concern. In this report, we evaluate the evidence for the expansion of brown trout in the Lees Ferry reach, consider a range of causal hypotheses for this expansion, examine the likely efficacy of several potential management interventions to reduce brown trout, and analyze the effects of those interventions on other resources of concern. The brown trout population at Lees Ferry historically consisted of a small number of large fish supported by low levels of immigration from downstream reaches. This population is now showing signs of sustained successful reproduction and is on the cusp of recruiting locally hatched fish into the spawning class, based on analysis with a new integrated population model. The proximate causes of this change in status are a large pulse of immigration in the fall of 2014 and higher reproductive rates in 2015-2017. The ultimate causes of this change are not clear. The pulse of immigrants from downstream reaches in fall 2014 may have been induced by three sequential high-flow releases from the dam in November of 2012-2014, but may also have been the result of a unique set of circumstances unrelated to dam operations. The increase in reproduction may have been the result of any number of changes, including an Allee effect, warmer water temperatures, a decrease in competition from rainbow trout, or fall high-flow releases. Correlations over space and time among predictor variables do not allow us to make a clear inference about the cause of the changes. Under a null causal model, and without any changes to management, we predict there is a 36-percent chance the brown trout population at Lees Ferry will not show sustained growth, and will remain around a mean size of 5,800 adults, near its current size; in contrast, we predict there is a 64-percent chance that the population has a positive intrinsic growth rate and will increase 3-10 fold over the next 20 years. A humpback chub population the ecosystem, potentially undermining goals associated with sandbar building, recreation, and riparian vegetation, but would increase hydropower revenue. Trout management flows would reduce hydropower revenue. From the standpoint of humpback chub, the alternative strategies largely follow the effect on brown trout; when brown trout abundance is reduced, predation pressure decreases, and humpback chub viability is predicted to increase, but the variation in predicted chub viability is not large across strategies or causal hypotheses. To design a response to brown trout, management agencies will need to navigate both the tradeoffs among resourc...
Estimates of age derived from daily ring counts from otoliths and capture rates of larval June sucker Chasmistes liorus were used to determine the relationship between discharge rates of the Provo River and residence time and patterns of larval drift. During 1997, larval drift occurred over a 22 day period when discharge rates were low (mean +/-s.d. 3.2 +/- 0.0 m(3) s(-1)). In 1998, larval drift occurred in two separate events over a 40 day period. Discharge was higher during the first larval drift period (19 days; 24.8 +/- 1.3 m(3) s(-1)) and lower during the second larval drift period (17 days; 7.0 +/- 0.9 m(3) s(-1)). In 1997, no larval fish were collected at the lowermost transect on the Provo River (nearest Utah Lake), and few larvae >21 days of age were found. During the first drift period of 1998, larval C. liorus were collected at all transects, and mean age of larvae collected between upstream and downstream transects increased by c. 7 days. During the second drift period of 1998, only a few were collected in the lowermost transects, and age did not increase with proximity to the lake. Patterns in catch and age distribution of larval C. liorus in the lower Provo River suggest that recruitment failure occurs during the larval drift period in years with insufficient discharge to transport larvae into the lake.
A small irrigation diversion dam near Chiloquin, Oregon, was removed and replaced with a pump station to improve fish passage for Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) entering the Sprague River on their spawning migrations. During the developmental phase of the pump station, a need was identified to better understand the larval drift characteristics of these endangered catostomids in order to reduce entrainment into the irrigation system. The spatial, seasonal, and diel distribution of drifting larvae was measured during the 2004 spawning season at two proposed sites on the Williamson River where the pump station could be located. Larval drift for both species coincided with the irrigation season making them subject to entrainment into the irrigation system. Drift occurred almost exclusively at night with larvae entering the drift at sunset and exiting the drift at sunrise. Nighttime larval densities were concentrated near the surface and at midchannel at both sites. Densities were generally greater on the side of mid-channel with greater flow. During early morning sampling we detected a general shift in larval drift from surface to subsurface drift. We also observed an increase in larval densities towards the shore opposite from the proposed pump station at the upper site whereas larval densities remained high at midchannel at the lower site. During daytime sampling, the few larvae that were collected were distributed throughout the water column at both pump sites. This study found that larvae drifting during all time periods were generally distributed further across the cross section, deeper in the water column, and closer to where the proposed water withdrawal structure would be built at the downstream site when compared to the upstream site. Recommendations were provided to locate the withdrawal facility at the upstream site and operate it in a manner such that larval entrainment would likely be minimized.
Restoration of altered or degraded habitats is often a key component in the conservation plan of native aquatic species, but introduced species may influence the response of the native community to restoration. Recent habitat restoration of the middle section of the Provo River in central Utah, USA, provided an opportunity to evaluate the effect of habitat restoration on the native fish community in a system with an introduced, dominant predator-brown trout (Salmo trutta). To determine the change in distribution of fish species and community composition, we surveyed 200 m of each of the four study reaches both before restoration (1998) and after restoration (2007 and 2009). Juveniles and adults of six native species increased in distribution after restoration. The variation in fish community structure among reaches was lower post-restoration than pre-restoration. Overall, restoration of complex habitat in the middle Provo River led to increased pattern of coexistence between native fishes and introduced brown trout, but restoration activities did not improve the status of the river's two rarest native fish species. Habitat restoration may only be completely successful in terms of restoring native communities when the abundance of invasive species can be kept at low levels.
In 2009 and 2010, drift samples were collected from six sites on the lower Sprague and Williamson Rivers to assess drift patterns of larval Lost River suckers (Deltistes luxatus) (LRS) and shortnose suckers (Chasmistes brevirostris) (SNS). The objective of this study was to characterize the drift timing, relative abundance, and growth stage frequencies of larval suckers emigrating from the Sprague River watershed. These data were used to evaluate changes in spawning distribution of LRS and SNS in the Sprague River after the 2008 removal of Chiloquin Dam. Drift samples were collected at four sites on the Sprague River and one site each on the Williamson and Sycan Rivers. Data presented in this report is a continuation of a research project that began in 2004. Larval drift parameters measured in 2009 and 2010 were similar to those measured from 2004 to 2008. Most larvae and eggs were collected at the two drift sites downstream of the former Chiloquin Dam (river kilometer 0.7 on the Sprague River and river kilometer 7.4 on the Williamson River). Mean and peak sample densities increased with proximity to Upper Klamath Lake. Peak larval densities continued to be collected between 1 and 3 hours after sunset at Chiloquin, which is the drift site nearest a known spawning area. Catch distribution of larvae and eggs in the lower Sprague and Williamson Rivers suggests that most SNS and LRS spawning continues to occur downstream of the site of the former Chiloquin Dam. The sizes and growth stages indicate that larval emigration from spawning areas resulting from drift occurs within a few days after swim-up. Larval suckers appear to move downstream quickly until they reach suitable rearing habitat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.