The early growth response 2 gene (EGR2) is part of a multigene family encoding Cys2His2 type zinc-finger proteins and may play a role in the regulation of cellular proliferation. Egr2, (also known as Krox20) is the mouse orthologue of human EGR2 and was first identified as an immediate-early response gene, encoding a protein that binds DNA in a sequence-specific manner and acts as a transcription factor. Stable expression of Egr2 is specifically associated with the onset of myelination in the peripheral nervous system (PNS). Egr2(-/-) mice display disrupted hindbrain segmentation and development, and a block of Schwann-cell differentiation at an early stage. We hypothesized that Egr2 may be a transcription factor affecting late myelin genes and that human myelinopathies of the PNS may result from mutations in EGR2. In support of this hypothesis, we have identified one recessive and two dominant missense mutations in EGR2 (within regions encoding conserved functional domains) in patients with congenital hypomyelinating neuropathy (CHN) and a family with Charcot-Marie-Tooth type 1 (CMT1).
Introduction: Duchenne muscular dystrophy (DMD) subjects ≥5 years with nonsense mutations were followed for 48 weeks in a multicenter, randomized, double-blind, placebo-controlled trial of ataluren. Placebo arm data (N = 57) provided insight into the natural history of the 6-minute walk test (6MWT) and other endpoints. Methods: Evaluations performed every 6 weeks included the 6-minute walk distance (6MWD), timed function tests (TFTs), and quantitative strength using hand-held myometry. Results: Baseline age (≥7 years), 6MWD, and selected TFT performance are strong predictors of decline in ambulation (Δ6MWD) and time to 10% worsening in 6MWD. A baseline 6MWD of <350 meters was associated with greater functional decline, and loss of ambulation was only seen in those with baseline 6MWD <325 meters. Only 1 of 42 (2.3%) subjects able to stand from supine lost ambulation. Conclusion: Findings confirm the clinical meaningfulness of the 6MWD as the most accepted primary clinical endpoint in ambulatory DMD trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.