We model a value of statistical life (VSL) transfer function for application to road-safety engineering in developing countries through an income-disaggregated meta-analysis of scope-sensitive stated preference VSL data. The income-disaggregated meta-analysis treats developing country and high-income country data separately. Previous transfer functions are based on aggregated datasets that are composed largely of data from high-income countries. Recent evidence, particularly with respect to the income elasticity of VSL, suggests that the aggregate approach is deficient because it does not account for a possible change in income elasticity across income levels. Our dataset (a minor update of the OECD database published in 2012) includes 123 scope-sensitive VSL estimates from developing countries and 185 scope-sensitive estimates from high-income countries. The transfer function for developing countries gives VSL=1.3732E-4×(GDP per capita)(∧)2.478, with VSL and GDP per capita expressed in 2005 international dollars (an international dollar being a notional currency with the same purchasing power as the U.S. dollar). The function can be applied for low- and middle-income countries with GDPs per capita above $1268 (with a data gap for very low-income countries), whereas it is not useful above a GDP per capita of about $20,000. The corresponding function built using high-income country data is VSL=8.2474E+3×(GDP per capita)(∧).6932; it is valid for high-income countries but over-estimates VSL for low- and middle-income countries. The research finds two principal significant differences between the transfer functions modeled using developing-country and high-income-country data, supporting the disaggregated approach. The first of these differences relates to between-country VSL income elasticity, which is 2.478 for the developing country function and .693 for the high-income function; the difference is significant at p<0.001. This difference was recently postulated but not analyzed by other researchers. The second difference is that the traffic-risk context affects VSL negatively in developing countries and positively in high-income countries. The research quantifies uncertainty in the transfer function using parameters of the non-absolute distribution of relative transfer errors. The low- and middle-income function is unbiased, with a median relative transfer error of -.05 (95% CI: -.15 to .03), a 25th percentile error of -.22 (95% CI: -.29 to -.19), and a 75th percentile error of .20 (95% CI: .14 to .30). The quantified uncertainty characteristics support evidence-based approaches to sensitivity analysis and probabilistic risk analysis of economic performance measures for road-safety investments.
Rigorous evaluation of implemented safety treatments, especially for innovative treatments and those targeted at rare crash types, is challenging to accomplish with conventional crash-based analyses. This paper aims to address this challenge for treatments at urban signalized intersections by providing a methodology that uses surrogate measures of safety obtained from video analytics to predict changes in crashes. To develop this approach, left turn opposed traffic conflicts based on post-encroachment times, along with corresponding conflicting vehicle speeds, are first measured from video observations at signalized intersections. The conflicts are then classified into three severity levels using a risk score function defined by these measures. Multiple linear regression models are developed to relate left turn opposed crashes at the same intersections in the period 2009–2014 to the correspondingly classified conflicts. The results show strong relationships between the classified conflicts and crashes (adjusted [Formula: see text] of 85% and 94% for total and fatal/injury crashes, respectively). The results also reveal that the contribution of conflicts to the risk of crashes varies based on speed dimension of their severity, suggesting that neglecting speed as a factor in conflict severity levels may be at the expense of losing meaningful information. The models can be applied to estimate the change in crashes following a safety treatment by observing, through video analytics, the change in conflicts and speeds and using the crash-conflict-speed model. The methodological approach is viable for quickly evaluating all treatments and, in particular, innovative ones for which knowledge on safety effects is sparse or non-existent.
The survey found that emergency physicians lacked core knowledge about the use of blood and blood component therapy in the context of massive haemorrhage following trauma. Doctors were unaware of how to prevent and treat early coagulopathy. Educational resources specifically for use by emergency physicians are limited on this topic. The use of massive transfusion protocols--that standardised blood component therapy is automatically delivered at specific points within resuscitation--would not only guide doctors, but be a clear step towards minimising the complications associated with massive transfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.