No difference in player performance after concussion was found whether the player did or did not miss games before return. Return without missing games may be associated with experience and timing of injury within a season and less likely after newer guidelines.
1. Understanding seasonal patterns of activity, or phenology, of vector species is fundamental to determining seasonality of disease risk and epidemics of vector-borne disease. Spatiotemporal variation in abiotic conditions can influence variation in phenological patterns and life history events, which can dramatically influence the ecological role and human impact of a species. For arthropod vectors of human diseases such as ticks, these phenological patterns determine human exposure risk, yet how abiotic conditions interact to determine suitable conditions for hostseeking of vector species is difficult to disentangle.2. Here, we use MaxEnt to model spatial patterns and differences in host-seeking phenology of the western blacklegged tick (Ixodes pacificus) in California using spatially and temporally refined adult tick occurrence data and similarly refined climate and environmental data. We empirically validate the model using phenological data from field studies conducted at sites across California's latitudinal gradient.3. We find adult tick host-seeking activity varies substantially throughout the year, as well as across the large latitudinal gradient in the state. Suitable conditions for host-seeking are found earlier in fall and later in the spring in northern than in southern California. These seasonal patterns are primarily associated with monthly precipitation, minimum winter temperature, and winter precipitation, with maximum monthly temperature possibly playing a more prominent role in limiting hostseeking activity earlier in the spring in southern than northern California. Synthesis and applications.Modelling the seasonal activity of the western blacklegged tick, we find both a longer window for host-feeding and more protracted risk of human exposure to this vector species in northern than southern California.We further identify key environmental factors associated with these patterns, including precipitation and temperature that are otherwise challenging to elucidate in field and laboratory studies over large spatial scales. Moreover, we illustrate how species distribution models, in combination with temporally refined species occurrence and environmental data, can be used to investigate environmental factors predictive of geographic variation in seasonality or phenology of vector species. This produces not only novel ecological insight, but key information for public | 2563Journal of Applied Ecology MACDONALD et AL.
Global environmental change is having profound effects on the ecology of infectious disease systems, which are widely anticipated to become more pronounced under future climate and land use change. Arthropod vectors of disease are particularly sensitive to changes in abiotic conditions such as temperature and moisture availability. Recent research has focused on shifting environmental suitability for, and geographic distribution of, vector species under projected climate change scenarios. However, shifts in seasonal activity patterns, or phenology, may also have dramatic consequences for human exposure risk, local vector abundance and pathogen transmission dynamics. Moreover, changes in land use are likely to alter human–vector contact rates in ways that models of changing climate suitability are unlikely to capture. Here we used climate and land use projections for California coupled with seasonal species distribution models to explore the response of the western blacklegged tick (Ixodes pacificus), the primary Lyme disease vector in western North America, to projected climate and land use change. Specifically, we investigated how environmental suitability for tick host‐seeking changes seasonally, how the magnitude and direction of changing seasonal suitability differs regionally across California, and how land use change shifts human tick‐encounter risk across the state. We found vector responses to changing climate and land use vary regionally within California under different future scenarios. Under a hotter, drier scenario and more extreme land use change, the duration and extent of seasonal host‐seeking activity increases in northern California, but declines in the south. In contrast, under a hotter, wetter scenario seasonal host‐seeking declines in northern California, but increases in the south. Notably, regardless of future scenario, projected increases in developed land adjacent to current human population centers substantially increase potential human–vector encounter risk across the state. These results highlight regional variability and potential nonlinearity in the response of disease vectors to environmental change.
Players who undergo sports hernia surgeries return to play and often perform similar to their presurgery level. Players with over 7 full seasons return but with significant decreases in their overall performance levels. Less veteran players were able to return to play without any statistical decrease in performance and are likely the best candidates for repair once incurring injury.
These matching criteria may increase the number of available matches, reduce wait times for patients, and reduce the number of wasted grafts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.