Chytridiomycosis is a major cause of mortality in free-living and captive amphibians in Australia and mortality rate increases at lower temperatures.
Summary 1.Climate change will alter the distribution and abundance of many species, including those of concern to human health. Accurate predictions of these impacts must be based on an understanding of the mechanistic links between climate and organisms, and a consideration of evolutionary responses. 2.Here we use biophysical models of energy and mass transfer to predict climatic impacts on the potential range of the dengue fever vector, Aedes aegypti , in Australia. We develop a first-principles approach to calculate water depth and daily temperature cycles in containers differing in size, catchment and degree of shading to assess habitat suitability for the aquatic life cycle phase. We also develop a method to predict potential climatic impacts on the evolutionary response of traits limiting distribution. 3. Our predictions show strong correspondence with the current and historical distribution and abundance of Ae. aegypti in Australia, suggesting that inland and northern limits are set by water availability and egg desiccation resistance, and southern limits by adult and larval cold tolerance. 4. While we predict that climate change will directly increase habitat suitability throughout much of Australia, the potential indirect impact of changed water storage practices by humans in response to drought may have a greater effect. 5. In northern Australia, we show that evolutionary changes in egg desiccation resistance could potentially increase the chances of establishment in a major centre (Darwin) under climate change. 6. Our study demonstrates how biophysical models of climate-animal interactions can be applied to make decisions about managing biotic responses to climate change. Mechanistic models of the kind we apply here can provide more robust and general predictions than correlative analyses. They can also explicitly incorporate evolutionary responses, the outcomes of which may significantly alter management decisions.
In Queensland, Australia, in response to isolated cases of dengue infection, larval control of the vector Aedes aegypti (L.) (Diptera: Culicidae) is targeted at breeding sites within 200 m of a case and interior spraying with a pyrethroid adulticide is targeted at premises within 100 m. To ascertain whether these limits are appropriate, we conducted a mark-release-recapture study to measure the dispersal of female Ae. aegypti in the city of Cairns where transmission occurs. Female mosquitoes reared from wild collected eggs were differentially marked with fluorescent dust depending on whether they were to be released blood-fed or non-blood-fed, and a total of 1,948 females was released. A total of 132 sticky ovitraps was set at 64 premises within a 200 m radius and collections of trapped adults were made at 5-15 days post-release. Sixty-seven females (3.4%) were recaptured, with the furthest being caught 200 m from the release point, and the mean distance travelled was 78 m. Overall, 23.1% of the recaptures outside the release site were taken beyond 100 m by day 15. Dispersal was comparable for both blood-fed and non-blood-fed releases. There was a significant tendency for dispersal to be in a north-westerly direction, probably because of the presence of numerous containers and heavy shading by trees in this direction and a busy road to the south of the release point that appeared to inhibit dispersal. The results suggest that adulticiding may have to be extended beyond 100 m if more than 8 days have elapsed since female Ae. aegypti could have fed upon a viraemic dengue case. The study also shows that dispersal is not random, and that it may be possible to maximize vector control by taking into account environmental factors that affect the direction of female mosquito flight.
Age is a critical determinant of an adult female mosquito's ability to transmit a range of human pathogens. Despite its central importance, relatively few methods exist with which to accurately determine chronological age of field-caught mosquitoes. This fact is a major constraint on our ability to fully understand the relative importance of vector longevity to disease transmission in different ecological contexts. It also limits our ability to evaluate novel disease control strategies that specifically target mosquito longevity. We report the development of a transcriptional profiling approach to determine age of adult female Aedes aegypti under field conditions. We demonstrate that this approach surpasses current cuticular hydrocarbon methods for both accuracy of predicted age as well as the upper limits at which age can be reliably predicted. The method is based on genes that display age-dependent expression in a range of dipteran insects and, as such, is likely to be broadly applicable to other disease vectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.