The incidence and severity of extraordinary macroalgae blooms (green tides) are increasing. Here, climate change (ocean warming and acidification) impacts on life history and biochemical responses of a causative green tide species, Ulva rigida, were investigated under combinations of pH (7.95, 7.55, corresponding to lower and higher pCO), temperature (14, 18°C) and nitrate availability (6 and 150μmolL). The higher temperature accelerated the onset and magnitude of gamete settlement. Any two factor combination promoted germination and accelerated growth in young plants. The higher temperature increased reproduction, which increased further in combination with elevated pCO or nitrate. Reproductive success was highest (64.4±5.1%) when the upper limits of all three variables were combined. Biochemically, more protein and lipid but less carbohydrate were synthesized under higher temperature and nitrate conditions. These results suggest that climate change may cause more severe green tides, particularly when eutrophication cannot be effectively controlled.
Unusually dense aggregations of the sea urchin Lytechinus variegatus overgrazed at least 0.81 kmz of seagrass habitat in Outer Florida Bay (USA) between August 1997 and I\,Iay 1998. Initially, sea-urchin densities were as high as 364 sea urchins m-', but they steadily declined to within a range of 20 to 50 sea urchins m-2 by December 1998. Prior to this event, sea-urchin densities were <1 sea urchin m-2 in this area of Outer Florida Bay. Seagrasses in Outer Florida Bay consist primarily of manatee grass Syringodium filiforme. of which 82% or 390 g dry weight rn-2 of total seagrass biornass and >95% of the short-shoot apical menstems were removed by sea-urchin grazing in our study area. Such extensive loss may severely limit recovery of this seagrass comrnunity by vegetative reproduction. Effects of the removal of seagrass biomass have already resulted in the depletion of epifaunal-infaunal mollusk assemblages and resuspension of fine-grained (<64 pm) surface sediments-which have caused significant changes in cornrnunity structure and in the physical properties of the Sediments. These changes, coupled with the loss of essential fishery habitat, reductions in primary and secondary production, and degradation of water quality, may lead to additional, longer-term, indirect effects that may extend beyond the boundaries of the grazed areas and into adjacent coastal ecosystems.
In August 1997, a large aggregation of the common sea urchin, Lytechinus variegatus, was discovered moving southward through a lush and productive seagrass monoculture of Syringodium filiforme in the Florida Keys, FL. Sea urchin densities at the grazing front were greater than 300 individuals m−2 which resulted in the overgrazing of seagrasses and a complete denuding of all vegetation from this area. The steady rate of the grazing front migration permitted the estimation of the time since disturbance for any point behind this grazing front allowing the use of a chronosequence approach to investigate the processes early on in succession of these communities. In May 1999, six north‐south parallel transects were established across the disturbed seagrass communities and into the undisturbed areas south of the grazing front. Based on the measured rates of the migration of the grazing front, we grouped 60 sites into five categories (disturbed, recently grazed, active grazing front, stressed and undisturbed). The large scale loss of seagrass biomass initiated community‐wide cascading effects that significantly altered resource regimes and species diversity. The loss of the seagrass canopy and subsequent death and decay of the below‐ground biomass resulted in a de‐stabilization of the sediments. As the sediments were eroded into the water column, turbidity significantly increased, reducing light availability and significantly reducing the sediment nitrogen pool and depleting the seed bank. The portion of the chronosequence that has had the longest period of recovery now consists of a mixed community of seagrass and macroalgae, as remnant survivors and quick colonizers coexist and jointly take advantage of the open space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.