532 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/02/2015 Terms of Use: http://spiedl.org/terms Proc. of SPIE Vol. 5204 533 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/02/2015 Terms of Use: http://spiedl.org/terms
Ground vehicles can be effectively tracked using a moving target indicator (MTI) radar. However, vehicles whose velocity along the line-of-sight to the radar falls below the minimum detectable velocity (MDV) are not detected. One way targets avoid detection, therefore, is to execute a series of move-stop-move motion cycles. While a target can be acquired after beginning to move again, it may not be recognized as a target previously in track. Particularly for the case of high-value targets, it is imperative that a vehicle be continuously tracked. We present an algorithm for determining the probability that a target has stopped and an estimate of its stopped state (which could be passed to a tasker to schedule a spot synthetic aperature radar (SAR) measurement). We treat a non-detection event as evidence that can be used to update the target state probability density function (PDF). Updating the target state PDF using a non-detection event pushes the probability mass into regions of the state space in which the vehicle is either stopped or traveling at a speed such that the range-rate fails the MDV. The target state PDF updated with the non-detection events is then used to derive an estimate of the stopped target's location. Updating the target state PDF using a non-detection event is, in general, non-trivial and approximations are required to evaluate the updated PDF. When implemented with a particle filter, however, the updating formula is simple to evaluate and still captures the subtleties of the problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.