LCCJ can improve several risk factors of CVD in adults, including circulating TGs, CRP, and glucose, insulin resistance, and diastolic BP. This trial was registered at clinicaltrials.gov as NCT01295684.
Recent studies indicate that anthocyanin intake conveys a variety of health benefits, which depend on absorption and metabolic mechanisms that deliver anthocyanins and their bioactive metabolites to responsive tissues. The anthocyanin bioavailability of red cabbage (Brassica oleracea L. var. capitata) was evaluated as reflected by urinary excretion of anthocyanins and anthocyanin metabolites. Twelve volunteers consumed 100, 200, and 300 g of steamed red cabbage (containing 1.38 micromol of anthocyanins/g of cabbage) in a crossover design. Anthocyanin concentration in cabbage extract and urine was measured by HPLC-MS/MS. Six nonacylated and 30 acylated anthocyanins were detected in red cabbage, and 3 nonacylated anthocyanins, 8 acylated anthocyanins, and 4 metabolites were present in urine. Mean 24 h excretion of intact anthocyanins increased linearly from 45 (100 g dose) to 65 nmol (300 g dose) for acylated anthocyanins and from 52 (100 g dose) to 79 nmol (300 g dose) for nonacylated anthocyanins. Urinary recovery of intact anthocyanins (percent of anthocyanin intake) decreased linearly from 0.041% (100 g dose) to 0.020% (300 g dose) for acylated anthocyanins and from 0.18% (100 g dose) to 0.09% (300 g dose) for nonacylated anthocyanins. Anthocyanin metabolites consisted of glucuronidated and methylated anthocyanins. The results show that red cabbage anthocyanins were excreted in both intact and metabolized forms and that recovery of nonacylated anthocyanins in urine was >4-fold that of acylated anthocyanins.
Two cultivars each of broccoli (Brassica oleracea L var italica), Brussels sprouts (B oleracea var gemmifera), cabbage (B oleracea var capitata), cauliflower (B oleracea var botrytis) and kale (B oleracea var acephala) were grown during two fall seasons and two spring seasons to determine whether significant seasonal effects on glucosinolate (GS) concentrations could be explained by mean temperature, photosynthetic photon flux (PPF) and daylength during the growing seasons. Concentrations of total GSs, indole GSs and glucoraphanin differed by genotype and season. Total GS concentrations at harvest had a negative linear but positive quadratic relationship with temperature and daylength over the 2 weeks preceding harvest and a positive linear but negative quadratic relationship with PPF over the same 2 weeks. The regression model for indole GS concentrations similarly varied with mean temperature, daylength and PPF over the 4 weeks prior to harvest. Glucoraphanin concentrations at harvest decreased linearly with mean PPF from transplanting to harvest and had a negative linear but positive quadratic relationship with daylength from transplanting to harvest. Because glucoraphanin and other GSs in cruciferous crops are important for cancer chemoprotection, climatic conditions should be considered when planning planting dates or when making breeding selections for GS concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.