Abstract. Syringolin A is a new plant elicitor produced by the plant pathogen Pseudomonas syringae pv. syringae. The goal of this study was to investigate whether syringolin A exhibits anti‐proliferative properties in cancer cells. The treatment of human neuroblastoma (NB) cells (SK‐N‐SH and LAN‐1) and human ovarian cancer cells (SKOV3) with syringolin A (0–100 µm) inhibited cell proliferation in a dose‐dependent manner. The IC50 (50% inhibition) for each cell line ranged between 20 µm and 25 µm. In SK‐N‐SH cells, the treatment with 20 µm syringolin A led to a rapid (24 h) increase of the apoptosis‐associated tumour suppressor protein p53. In addition, we found that the treatment of SK‐N‐SH cells caused severe morphological changes after 48 h such as rounding of cells and loss of adherence, both conditions observed during apoptosis. The induction of apoptosis by syringolin A was confirmed by both poly (ADP‐ribose) polymerase (PARP) cleavage and annexin V assay. Taken together, we show for the first time that the natural product syringolin A exhibits anti‐proliferative activity and induces apoptosis. Syringolin A and structurally modified syringolin A derivatives may serve as new lead compounds for the development of novel anticancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.