Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells.
Ovarian germ cell survival is dependent upon the formation of primordial follicles, which occurs during fetal life in the human. Activin contributes to germ cell proliferation and survival at this time. SMADs2 and 3 are central elements in the activin signalling pathway and thus indicate sites of activin action. We have investigated the expression and localisation of SMADs2 and 3 in the fetal ovary between 14 and 20 weeks gestation, i.e. preceding and during primordial follicle formation. SMAD3 mRNA expression increased 1.9 fold (P=0.02). SMAD2 and 3 proteins were localised by immunofluorescence to the nuclei of three distinct populations of somatic cells: (a) stromal cells between clusters of germ cells; (b) some somatic cells intermingled with activin beta A-expressing germ cells; (c) pre-granulosa cells surrounding primordial follicles. Germ cells did not express SMAD2 or 3. Activin A increased and follistatin decreased phosphorylation of SMAD2/3 in vitro, and activin increased SMAD2 and decreased KITLG mRNA expression. It therefore appears that somatic cells are the targets for activin signalling in the developing ovary. The effects of activin on germ cells are indirect and include mediation by the kit ligand/c-Kit pathway, rather than being an autocrine germ cell effect.
These data indicate novel roles for PGE(2) in the regulation of germ cell development in the human ovary and show that these effects may be mediated by the regulation of factors including BDNF, activin A, and MCL1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.