Future integration of small unmanned aircraft within an urban airspace requires an a posteriori understanding of the building-induced aerodynamics which could negatively impact on vehicle performance. Moving away from generalised building formations, we model the centre of the city of Glasgow using Star-CCMþ, a commercial CFD package. After establishing a critical turbulent kinetic energy for our vehicle, we analyse the CFD results to determine how best to operate a small unmanned aircraft within this environment. As discovered in a previous study, the spatial distribution of turbulence increases with altitude. It was recommended then that UAVs operate at the minimal allowable altitude within a congested area. As the flow characteristics in an environment are similar, regardless of inlet velocity, we can determine areas within a city which will have consistently low or high values of turbulent kinetic energy. As the distribution of turbulence is dependent on prevailing wind directions, some directions are more favourable than others, even if the wind speed is unchanging. Moving forward we should aim to gather more information about integrated aircraft and how they respond to turbulence in a congested area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.