NP105–113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105–113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105–113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105–113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105–113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.
Understanding the pattern of gene expression during erythropoiesis is crucial for a synthesis of erythroid developmental biology. Here, we isolated 4 distinct populations at successive erythropoietindependent stages of erythropoiesis, including the terminal, pyknotic stage. The transcriptome was determined using Affymetrix arrays. First, we demonstrated the importance of using defined cell populations to identify lineage and temporally specific patterns of gene expression. Cells sorted by surface expression profile not only express significantly fewer genes than unsorted cells but also demonstrate significantly greater differences in the expression levels of particular genes between stages than unsorted cells. Second, using standard software, we identified more than 1000 transcripts not previously observed to be differentially expressed during erythroid maturation, 13 of which are highly significantly terminally regulated, including RFXAP and SMARCA4. Third, using matched filtering, we identified 12 transcripts not previously reported to be continuously upregulated in maturing human primary
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.