AimsThe long-term failure of autologous saphenous vein bypass grafts due to neointimal thickening is a major clinical burden. Identifying novel strategies to prevent neointimal thickening is important. Thus, this study aimed to identify microRNAs (miRNAs) that are dysregulated during neointimal formation and determine their pathophysiological relevance following miRNA manipulation.Methods and resultsWe undertook a microarray approach to identify dysregulated miRNAs following engraftment in an interpositional porcine graft model. These profiling experiments identified a number of miRNAs which were dysregulated following engraftment. miR-21 levels were substantially elevated following engraftment and these results were confirmed by quantitative real-time PCR in mouse, pig, and human models of vein graft neointimal formation. Genetic ablation of miR-21 in mice or grafted veins dramatically reduced neointimal formation in a mouse model of vein grafting. Furthermore, pharmacological knockdown of miR-21 in human veins resulted in target gene de-repression and a significant reduction in neointimal formation.ConclusionThis is the first report demonstrating that miR-21 plays a pathological role in vein graft failure. Furthermore, we also provided evidence that knockdown of miR-21 has therapeutic potential for the prevention of pathological vein graft remodelling.
BackgroundDrug-eluting stents reduce the incidence of in-stent restenosis, but they result in delayed arterial healing and are associated with a chronic inflammatory response and hypersensitivity reactions. Identifying novel interventions to enhance wound healing and reduce the inflammatory response may improve long-term clinical outcomes. Micro–ribonucleic acids (miRNAs) are noncoding small ribonucleic acids that play a prominent role in the initiation and resolution of inflammation after vascular injury.ObjectivesThis study sought to identify miRNA regulation and function after implantation of bare-metal and drug-eluting stents.MethodsPig, mouse, and in vitro models were used to investigate the role of miRNA in in-stent restenosis.ResultsWe documented a subset of inflammatory miRNAs activated after stenting in pigs, including the miR-21 stem loop miRNAs. Genetic ablation of the miR-21 stem loop attenuated neointimal formation in mice post-stenting. This occurred via enhanced levels of anti-inflammatory M2 macrophages coupled with an impaired sensitivity of smooth muscle cells to respond to vascular activation.ConclusionsMiR-21 plays a prominent role in promoting vascular inflammation and remodeling after stent injury. MiRNA-mediated modulation of the inflammatory response post-stenting may have therapeutic potential to accelerate wound healing and enhance the clinical efficacy of stenting.
Nogo-B was recently identified as a novel vascular marker; the normally high vascular expression of Nogo-B is rapidly lost following vascular injury. Here we assess the potential therapeutic effects of Ad-Nogo-B delivery to injured vessels in vivo. Nogo-B overexpression following Ad-Ng-B infection of vascular smooth muscle cells (VSMCs) was shown to block proliferation and migration in a dose-dependent manner in vitro. We next assessed the effects of Ad-Ng-B treatment on neointima formation in two in vivo models of acute vascular injury. Adventitial delivery of Ad-Ng-B to wire-injured murine femoral arteries led to a significant decrease in the intimal area [0.014 mm2 versus 0.030 mm2 (P = 0.049)] and the intima:media ratio [0.78 versus 1.67 (P = 0.038)] as compared to the effects of Ad-β-Gal control virus at 21 days after injury. Similarly, lumenal delivery of Ad-Ng-B to porcine saphenous veins prior to carotid artery grafting significantly reduced the intimal area [2.87 mm2 versus 7.44 mm2 (P = 0.0007)] and the intima:media ratio [0.32 versus 0.55 (P = 0.0044)] as compared to the effects following the delivery of Ad-β-Gal, at 28 days after grafting. Intimal VSMC proliferation was significantly reduced in both the murine and porcine disease models. Gene delivery of Nogo-B exerts a positive effect on vascular injury-induced remodeling and reduces neointimal development in two arterial and venous models of vascular injury.
a b s t r a c tWe performed in vivo phage display in the stroke prone spontaneously hypertensive rat, a cardiovascular disease model, and the normotensive Wistar Kyoto rat to identify cardiac targeting peptides, and then assessed each in the context of viral gene delivery. We identified both common and strain-selective peptides, potentially indicating ubiquitous markers and those found selectively in dysfunctional microvasculature of the heart. We show the utility of the peptide, DDTRHWG, for targeted gene delivery in human cells and rats in vivo when cloned into the fiber protein of subgroup D adenovirus 19p. This study therefore identifies cardiac targeting peptides by in vivo phage display and the potential of a candidate peptide for vector targeting strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.