Investigation of the SAR of the lead (methoxyalkyl)thiazole 1-[3-(naphth-2-ylmethoxy)phenyl]-1-thiazol-2-ylprop yl methyl ether (1, ICI 211965) led to the methoxytetrahydropyrans, a new series of 5-lipoxygenase (5-LPO) inhibitors exemplified by the parent compound 4-[3-(naphth-2-ylmethoxy)phenyl]-4- methoxy-3,4,5,6-tetrahydro-2H-pyran (4f). In vitro 4f inhibited leukotriene C4 (LTC4) synthesis in zymosan-stimulated plasma-free mouse macrophages and LTB4 synthesis in A-23187-stimulated human whole blood (IC50s 0.5 nM and 0.07 microM, respectively). In the rat 4f inhibited LTB4 synthesis in blood ex vivo and in zymosan-inflamed air pouch exudate with an ED50 3 h after oral dosing of 10 mg/kg in each system. In seeking more potent orally active compounds, strategies were explored in congeners of 4f for reducing lipophilicity without sacrificing potency. For example, replacement of 2-naphthyl of 4f by various aza- and oxoheterocycles afforded compounds in which log P is reduced by 1.7-2.3 units while potency in human whole blood in vitro was maintained or enhanced relative to 4f. In addition, the oxoheterocyclic replacements provided compounds with improved oral potency and the preferred compound from this group is 6-[[3-fluoro-5-(4-methoxy-3,4,5,6-tetrahydro-2H-pyran-4- yl)phenoxy]methyl]-1-methylquinol-2-one (4y). In the in vitro systems, 4y inhibited LT formation with IC50s in mouse macrophages and human whole blood of 3 nM and 0.02 microM, respectively. 4y did not inhibit the synthesis of cyclooxygenase (CO) products at concentrations up to 500 microM in human blood, a selectivity for 5-LPO over CO of greater than 20,000-fold. In the rat 4y inhibited the formation of LTB4 in blood ex vivo and in inflammatory exudate with ED50s 3 h after oral dosing of 0.9 and 0.3 mg/kg, respectively. 4y was more potent in vitro in human whole blood and in rat blood ex vivo at 3 h than either the 5-LPO inhibitor A-64077 or the FLAP antagonist MK-886. Based on these data 4y (ICI D2138) has been entered into development as an orally active, selective 5-LPO inhibitor for clinical evaluation in inflammatory conditions in which LTs are believed to play a role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.