Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. However, they also limit beneficial responses by suppressing sterilizing immunity and limiting anti-tumour immunity. Given that Treg cells can have both beneficial and deleterious effects, there is considerable interest in determining their mechanisms of action. In this Review, we discuss the basic mechanisms used by Treg cells to mediate suppression, and discuss whether one or many of these mechanisms are likely to be crucial for Treg-cell function. In addition, we present the hypothesis that effector T cells may not be ‘innocent’ parties in this suppressive process and might in fact potentiate Treg-cell function.
T cell exhaustion often occurs during chronic infections and prevents optimal viral control. The molecular pathways involved in T cell exhaustion, however, remain poorly understood. We demonstrate that exhausted CD8+ T cells are subject to complex layers of negative regulation due to co-expression of multiple inhibitory receptors. Exhausted CD8+ T cells expressed up to 7 inhibitory receptors. Co-expression of multiple distinct inhibitory receptors correlated with greater T cell exhaustion and more severe infection. Regulation of T cell exhaustion by diverse inhibitory pathways was non-redundant since blockade of PD-1 and LAG-3 simultaneously in vivo synergistically improved T cell responses and reduced viral load. Thus, CD8+ T cell responses during chronic viral infections are regulated by complex patterns of co-expressed inhibitory receptors.
Regulatory T (T(reg)) cells are a critical sub-population of CD4+ T cells that are essential for maintaining self tolerance and preventing autoimmunity, for limiting chronic inflammatory diseases, such as asthma and inflammatory bowel disease, and for regulating homeostatic lymphocyte expansion. However, they also suppress natural immune responses to parasites and viruses as well as anti-tumour immunity induced by therapeutic vaccines. Although the manipulation of T(reg) function is an important goal of immunotherapy, the molecules that mediate their suppressive activity remain largely unknown. Here we demonstrate that Epstein-Barr-virus-induced gene 3 (Ebi3, which encodes IL-27beta) and interleukin-12 alpha (Il12a, which encodes IL-12alpha/p35) are highly expressed by mouse Foxp3+ (forkhead box P3) T(reg) cells but not by resting or activated effector CD4+ T (T(eff)) cells, and that an Ebi3-IL-12alpha heterodimer is constitutively secreted by T(reg) but not T(eff) cells. Both Ebi3 and Il12a messenger RNA are markedly upregulated in T(reg) cells co-cultured with T(eff) cells, thereby boosting Ebi3 and IL-12alpha production in trans. T(reg)-cell restriction of this cytokine occurs because Ebi3 is a downstream target of Foxp3, a transcription factor that is required for T(reg)-cell development and function. Ebi3-/- and Il12a-/- T(reg) cells have significantly reduced regulatory activity in vitro and fail to control homeostatic proliferation and to cure inflammatory bowel disease in vivo. Because these phenotypic characteristics are distinct from those of other IL-12 family members, this novel Ebi3-IL-12alpha heterodimeric cytokine has been designated interleukin-35 (IL-35). Ectopic expression of IL-35 confers regulatory activity on naive T cells, whereas recombinant IL-35 suppresses T-cell proliferation. Taken together, these data identify IL-35 as a novel inhibitory cytokine that may be specifically produced by T(reg) cells and is required for maximal suppressive activity.
Inhibitory receptors on immune cells are pivotal regulators of immune escape in cancer. Among these inhibitory receptors, CTLA-4 (targeted clinically by ipilimumab) serves as a dominant off-switch while other receptors such as PD-1 and LAG-3 seem to serve more subtle rheostat functions. However, the extent of synergy and cooperative interactions between inhibitory pathways in cancer remain largely unexplored. Here we reveal extensive co-expression of PD-1 and LAG-3 on tumor-infiltrating CD4+ and CD8+ T cells in three distinct transplantable tumors. Dual anti-LAG-3/anti-PD-1 antibody treatment cured most mice of established tumors that were largely resistant to single antibody treatment. Despite minimal immunopathological sequelae in PD-1 and LAG-3 single knockout mice, dual knockout mice abrogated self-tolerance with resultant autoimmune infiltrates in multiple organs, leading to eventual lethality. However, Lag3−/−Pdcd1−/− mice demonstrated markedly increased survival from and clearance of multiple transplantable tumors. Together, these results define a strong synergy between the PD-1 and LAG-3 inhibitory pathways in tolerance to both self and tumor antigens. Additionally, they argue strongly that dual blockade of these molecules represents a promising combinatorial strategy for cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.