Anthocyanins belong to the flavonoid group of polyphenolic compounds, which are responsible for the red and blue colors of plant organs such as fruits, flowers, and leaves. Due to their frequent presence in plants, particularly berry fruits, vegetables, and grapes, they are key components of the human diet. Interest in anthocyanins has increased widely during the past decade. Numerous studies have suggested that anthocyanins have a wide range of health-promoting properties. These compounds are therefore considered to be a functional food factor, which may have important implications in the prevention of chronic diseases. The aim of this body of work is to investigate and review the current literature on anthocyanins, and particularly their pharmacokinetics and any health-promoting properties, in order to summarize existing knowledge and highlight any aspects that require further study and analysis.
Polyphenols are a group of phytochemicals with potential health-promoting effects. They are classified as flavonoid (flavonols, flavanols, flavones, flavanones, isoflavones, and anthocyanins) and non-flavonoid molecules (phenolic acids, hydroxycinnamic acids, lignans, stilbenes, and tannins). Although an increasing number of trials have shown a correlation among polyphenol consumption and a reduction in risk factors for chronic diseases, discrepancies in explaining their positive effects have been found in terms of the bioavailability. In fact, polyphenols show a low bioavailability due to several factors: interaction with the food matrix, the metabolic processes mediated by the liver (phase I and II metabolism), intestine and microbiota. On the other hand, the biological activities of phenol compounds may be mediated by their metabolites, which are produced in vivo, and recent studies have confirmed that these molecules may have antioxidant and anti-phlogistic properties. This review discusses the studies performed in vivo, which consider the polyphenol bioavailability and their different food sources. Factors influencing the biological effects of the main classes of polyphenols are also considered.
1 To determine whether cimetidine altered the renal handling of metformin, seven subjects took 0.25 g metformin daily with and without cimetidine 0.4 g twice daily. Blood and urine samples were collected and assayed for metformin, cimetidine and creatinine by h.p.l.c. 2 Cimetidine significantly increased the area under the plasma metformin concentrationtime curve by an average of 50% and reduced its renal clearance over 24 h by 27% (P < 0.008). There was no alteration in the total urinary recovery of metformin when cimetidine was co-administered. 3 The effect of cimetidine on the renal clearance of metformin was time dependent, being significantly reduced up to 6 h following cimetidine. These results appeared to be consistent with competitive inhibition of renal tubular secretion. 4 Cimetidine had no effect on the renal clearance of creatinine, but time-dependent variations in both metformin and creatinine renal clearance were observed. Metformin had no effect on cimetidine disposition. 5 It is concluded that cimetidine inhibits the renal tubular secretion of metformin in man, resulting in higher circulating plasma concentrations. Because of its propensity for causing dose and concentration-dependent adverse effects, the dose of metformin should be reduced when cimetidine is co-prescribed.
Friedreich ataxia (FRDA) is due to a triplet repeat expansion in FXN, resulting in deficiency of the mitochondrial protein frataxin. Resveratrol is a naturally occurring polyphenol, identified to increase frataxin expression in cellular and mouse models of FRDA and has anti-oxidant properties. This open-label, non-randomized trial evaluated the effect of two different doses of resveratrol on peripheral blood mononuclear cell (PBMC) frataxin levels over a 12-week period in individuals with FRDA. Secondary outcome measures included PMBC FXN mRNA, oxidative stress markers, and clinical measures of disease severity. Safety and tolerability were studied. Twenty-four participants completed the study; 12 received low-dose resveratrol (1 g daily) and 12 high-dose resveratrol (5 g daily). PBMC frataxin levels did not change in either dosage group [low-dose group change: 0.08 pg/μg protein (95% CI -0.05, 0.21, p = 0.21); high-dose group change: 0.03 pg/μg protein (95% CI -0.10, 0.15, p = 0.62)]. Improvement in neurologic function was evident in the high-dose group [change in Friedreich Ataxia Rating Scale -3.4 points, 95% CI (-6.6, -0.3), p = 0.036], but not the low-dose group. Significant improvements in audiologic and speech measures, and in the oxidative stress marker plasma F2-isoprostane were demonstrated in the high-dose group only. There were no improvements in cardiac measures or patient-reported outcome measures. No serious adverse events were recorded. Gastrointestinal side-effects were a common, dose-related adverse event. This open-label study shows no effect of resveratrol on frataxin levels in FRDA, but suggests that independent positive clinical and biologic effects of high-dose resveratrol may exist. Further assessment of efficacy is warranted in a randomized placebo-controlled trial.
Regulations introduced by the Food Standards Australia New Zealand in December 2002 require all wine and wine product labels in Australia to identify the presence of a processing aid, additive or other ingredient, which is known to be a potential allergen. The objective of this study was to establish sensitive assays to detect and measure allergenic proteins from commonly used processing aids in final bottled wine. Sensitive and specific enzyme-linked immunosorbent assays (ELISA) were developed and established for the proteins casein, ovalbumin, and peanut. Lower limits of detection of these proteins were 8, 1, and 8 ng/mL, respectively. A panel of 153 commercially available bottled Australian wines were tested by these ELISA, and except for two red wines known to contain added whole eggs, residuals of these food allergens were not detected in any wine. These findings are consistent with a lack of residual potentially allergenic egg-, milk-, or nut-derived processing aids in final bottled wine produced in Australia according to good manufacturing practice at a concentration that could cause an adverse reaction in egg, milk, or peanut/tree-nut allergic adult consumers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.