Autophagy is a major nutrient recycling mechanism in plants. However, its functional connection with programmed cell death (PCD) is a topic of active debate and remains not well understood. Our previous studies established the plant metacaspase AtMC1 as a positive regulator of pathogen-triggered PCD. Here, we explored the linkage between plant autophagy and AtMC1 function in the context of pathogen-triggered PCD and aging. We observed that autophagy acts as a positive regulator of pathogen-triggered PCD in a parallel pathway to AtMC1. In addition, we unveiled an additional, pro-survival homeostatic function of AtMC1 in aging plants that acts in parallel to a similar pro-survival function of autophagy. This novel pro-survival role of AtMC1 may be functionally related to its prodomain-mediated aggregate localization and potential clearance, in agreement with recent findings using the single budding yeast metacaspase YCA1. We propose a unifying model whereby autophagy and AtMC1 are part of parallel pathways, both positively regulating HR cell death in young plants, when these functions are not masked by the cumulative stresses of aging, and negatively regulating senescence in older plants. An emerging theme in cell death research is that cellular processes thought to be regulated by linear signaling pathways are, in fact, complex. Autophagy, initially considered merely a nutrient recycling mechanism necessary for cellular homeostasis, was recently shown to regulate cell death, mechanistically interacting with components that control apoptosis. Deficient autophagy can result in apoptosis [1][2][3] and autophagy hyper-activation can also lead to programmed cell death (PCD). 4 In addition, the pro-survival function of autophagy is mediated by apoptosis inhibition and apoptosis mediates autophagy, although this cross-regulation is not fully understood. 5In plants, autophagy can also have both pro-survival and pro-death functions. Autophagy-deficient plants exhibit accelerated senescence, 6-8 starvation-induced chlorosis, 6,7,9 hypersensitivity to oxidative stress 10 and endoplasmic reticulum stress.11 Further, autophagy-deficient plants cannot limit the spread of cell death after infection with tissue-destructive microbial infections.12,13 The plant phytohormone salicylic acid (SA) mediates most of these phenotypes.8 Autophagy has an essential, pro-survival role in situations where there is an increasing load of damaged proteins and organelles that need to be eliminated, that is, during aging or stress. Autophagy has an opposing, pro-death role during developmentally regulated cell death 14,15 or during the pathogentriggered hypersensitive response PCD (hereafter, HR) that occurs locally at the site of attempted pathogen attack. 16,17The dual pro-death/pro-survival functions of plant autophagy remain a topic of active debate.Also under scrutiny are possible novel functions of caspases and caspase-like proteins as central regulators of pro-survival processes. Caspases were originally defined as executioners of PCD in an...
Filamentous fungi encode distinct antifungal proteins (AFPs) that offer great potential to develop new antifungals. Fungi are considered immune to their own AFPs as occurs in Penicillium chrysogenum, the producer of the well-known PAF. The Penicillium digitatum genome encodes only one afp gene (afpB), and the corresponding protein (AfpB) belongs to the class B phylogenetic cluster. Previous attempts to detect AfpB were not successful. In this work, immunodetection confirmed the absence of AfpB accumulation in wild type and previous recombinant constitutive P. digitatum strains. Biotechnological production and secretion of AfpB were achieved in P. digitatum with the use of a P. chrysogenum-based expression cassette and in the yeast Pichia pastoris with the α-factor signal peptide. Both strategies allowed proper protein folding, efficient production and single-step purification of AfpB from culture supernatants. AfpB showed antifungal activity higher than the P. chrysogenum PAF against the majority of the fungi tested, especially against Penicillium species and including P. digitatum, which was highly sensitive to the self-AfpB. Spectroscopic data suggest that native folding is not required for activity. AfpB also showed notable ability to withstand protease and thermal degradation and no haemolytic activity, making AfpB a promising candidate for the control of pathogenic fungi.
We present here the characterization of a new gene family, awr, found in all sequenced Ralstonia solanacearum strains and in other bacterial pathogens. We demonstrate that the five paralogues in strain GMI1000 encode type III-secreted effectors and that deletion of all awr genes severely impairs its capacity to multiply in natural host plants. Complementation studies show that the AWR (alanine-tryptophanarginine tryad) effectors display some functional redundancy, although AWR2 is the major contributor to virulence. In contrast, the strain devoid of all awr genes (Δawr1-5) exhibits enhanced pathogenicity on Arabidopsis plants. A gain-of-function approach expressing AWR in Pseudomonas syringae pv. tomato DC3000 proves that this is likely due to effector recognition, because AWR5 and AWR4 restrict growth of this bacterium in Arabidopsis. Transient overexpression of AWR in nonhost tobacco species caused macroscopic cell death to varying extents, which, in the case of AWR5, shows characteristics of a typical hypersensitive response. Our work demonstrates that AWR, which show no similarity to any protein with known function, can specify either virulence or avirulence in the interaction of R. solanacearum with its plant hosts.
The plant pathogenic bacterium Ralstonia solanacearum injects more than 70 effector proteins (virulence factors) into the host plant cells via the needle-like structure of a type III secretion system. The type III secretion system effector proteins manipulate host regulatory networks to suppress defense responses with diverse molecular activities. Uncovering the molecular function of these effectors is essential for a mechanistic understanding of R. solanacearum pathogenicity. However, few of the effectors from R. solanacearum have been functionally characterized, and their plant targets remain largely unknown. Here, we show that the ChaC domain-containing effector RipAY/RSp1022 from R. solanacearum exhibits ␥-glutamyl cyclotransferase (GGCT) activity to degrade the major intracellular redox buffer, glutathione. Heterologous expression of RipAY, but not other ChaC family proteins conserved in various organisms, caused growth inhibition of yeast Saccharomyces cerevisiae, and the intracellular glutathione level was decreased to ϳ30% of the normal level following expression of RipAY in yeast. Although active site mutants of GGCT activity were non-toxic, the addition of glutathione did not reverse the toxicity, suggesting that the toxicity might be a consequence of activity against other ␥-glutamyl compounds. Intriguingly, RipAY protein purified from a bacterial expression system did not exhibit any GGCT activity, whereas it exhibited robust GGCT activity upon its interaction with eukaryotic thioredoxins, which are important for intracellular redox homeostasis during bacterial infection in plants. Our results suggest that RipAY has evolved to sense the host intracellular redox environment, which triggers its enzymatic activity to create a favorable environment for R. solanacearum infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.