Summary
Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA) or standard chow (SC) diets. Despite having reduced food intake and weight gain equivalent to the SC group, HF/BCAA rats were equally insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1(ser307), accumulation of multiple acylcarnitines in muscle, and was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a poor dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance.
The highest amount of weekly exercise, with minimal weight change, had widespread beneficial effects on the lipoprotein profile. The improvements were related to the amount of activity and not to the intensity of exercise or improvement in fitness.
In preparation of the paper, there were several errors in the figure labeling, which were regretfully missed in the preparation and proofreading of the manuscript and which the authors would like to correct. None of these changes affects the data or the conclusions of the paper.(1) The heading of Figure 2H should read ''Glucose Infusion Rate,'' not ''Insulin Infusion Rate.'' (2) In the corresponding text on page 431 (right column, paragraph 2, line 13), the units for glucose infusion rate should be ''mg/kg/min,'' not ''mg/dl.'' (3) Likewise, on the y axis in Figure 2I, the units for glucose should read ''mg/kg/min'' rather than ''mg/dl.'' (4) On the y axis in Figures 3C, 4F, 4G, 4H, and 5D, the parenthetical reference to ''ARNT/Actin'' carried over from previous figures should simply be deleted. The correct specific genes or proteins measured in each panel are already indicated. (5) In Figure 5A, the correct units are ''mM,'' not ''mM/l.
Physical activity enhances insulin action in obese/overweight individuals. However, the exercise prescription required for the optimal enhancement is not known. The purpose of this study was to test the hypothesis that exercise training consisting of vigorous-intensity activity would enhance insulin sensitivity more substantially than moderate-intensity activity. Sedentary, overweight/obese subjects (n = 154) were randomly assigned to either control or an exercise group for 6 mo: 1) low-volume/moderate-intensity group [ approximately 12 miles walking/wk at 40-55% peak O2 consumption (Vo2 peak)], 2) low-volume/high-intensity group ( approximately 12 miles jogging/wk at 65-80% Vo2 peak), and 3) high-volume/high-intensity group ( approximately 20 miles jogging/wk at 65-80% Vo2 peak). Training volume (miles/wk) was achieved by exercising approximately 115 min/wk (low-volume/high-intensity group) or approximately 170 min/wk (low-volume/moderate-intensity and high-volume/high-intensity groups). Insulin action was measured with an insulin sensitivity index (SI) from an intravenous glucose tolerance test. In the control group, there was a decrement (P < 0.05) in SI. In contrast, all the exercise groups significantly (P < 0.05) increased SI; the relative increment in the low-volume/moderate-intensity and high-volume/high-intensity groups ( approximately 85%) were greater than in the low-volume/high-intensity group ( approximately 40%). In conclusion, physical activity encompassing a wide range of intensity and volume minimizes the insulin resistance that develops with a sedentary lifestyle. However, an exercise prescription that incorporated approximately 170 min of exercise/wk improved insulin sensitivity more substantially than a program utilizing approximately 115 min of exercise/wk, regardless of exercise intensity and volume. Total exercise duration should thus be considered when designing training programs with the intent of improving insulin action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.