The actin cytoskeleton is a complex structure that performs a wide range of cellular functions. In 2001, significant advances were made to our understanding of the structure and function of actin monomers. Many of these are likely to help us understand and distinguish between the structural models of actin microfilaments. In particular, 1) the structure of actin was resolved from crystals in the absence of cocrystallized actin binding proteins (ABPs), 2) the prokaryotic ancestral gene of actin was crystallized and its function as a bacterial cytoskeleton was revealed, and 3) the structure of the Arp2/3 complex was described for the first time. In this review we selected several ABPs (ADF/cofilin, profilin, gelsolin, thymosin beta4, DNase I, CapZ, tropomodulin, and Arp2/3) that regulate actin-driven assembly, i.e., movement that is independent of motor proteins. They were chosen because 1) they represent a family of related proteins, 2) they are widely distributed in nature, 3) an atomic structure (or at least a plausible model) is available for each of them, and 4) each is expressed in significant quantities in cells. These ABPs perform the following cellular functions: 1) they maintain the population of unassembled but assembly-ready actin monomers (profilin), 2) they regulate the state of polymerization of filaments (ADF/cofilin, profilin), 3) they bind to and block the growing ends of actin filaments (gelsolin), 4) they nucleate actin assembly (gelsolin, Arp2/3, cofilin), 5) they sever actin filaments (gelsolin, ADF/cofilin), 6) they bind to the sides of actin filaments (gelsolin, Arp2/3), and 7) they cross-link actin filaments (Arp2/3). Some of these ABPs are essential, whereas others may form regulatory ternary complexes. Some play crucial roles in human disorders, and for all of them, there are good reasons why investigations into their structures and functions should continue.
Abstract-The sarcomeric titin springs influence myocardial distensibility and passive stiffness. Titin isoform composition and protein kinase (PK)A-dependent titin phosphorylation are variables contributing to diastolic heart function. However, diastolic tone, relaxation speed, and left ventricular extensibility are also altered by PKG activation. We used back-phosphorylation assays to determine whether PKG can phosphorylate titin and affect titin-based stiffness in skinned myofibers and isolated myofibrils. PKG in the presence of 8-pCPT-cGMP (cGMP) phosphorylated the 2 main cardiac titin isoforms, N2BA and N2B, in human and canine left ventricles. In human myofibers/myofibrils dephosphorylated before mechanical analysis, passive stiffness dropped 10% to 20% on application of cGMP-PKG. Autoradiography and anti-phosphoserine blotting of recombinant human I-band titin domains established that PKG phosphorylates the N2-B and N2-A domains of titin. Using site-directed mutagenesis, serine residue S469 near the COOH terminus of the cardiac N2-B-unique sequence (N2-Bus) was identified as a PKG and PKA phosphorylation site. To address the mechanism of the PKG effect on titin stiffness, single-molecule atomic force microscopy force-extension experiments were performed on engineered N2-Bus-containing constructs. The presence of cGMP-PKG increased the bending rigidity of the N2-Bus to a degree that explained the overall PKG-mediated decrease in cardiomyofibrillar stiffness. Thus, the mechanically relevant site of PKG-induced titin phosphorylation is most likely in the N2-Bus; phosphorylation of other titin sites could affect protein-protein interactions. The results suggest that reducing titin stiffness by PKG-dependent phosphorylation of the N2-Bus can benefit diastolic function. Failing human hearts revealed a deficit for basal titin phosphorylation compared to donor hearts, which may contribute to diastolic dysfunction in heart failure. Key Words: cGMP Ⅲ nitric oxide Ⅲ diastolic function Ⅲ connectin Ⅲ passive tension M yocardial and chamber diastolic function are influenced by chamber geometry, hypertrophy, the extracellular matrix and the sarcomeric titin springs. Titins are giant proteins which exist in the heart in 2 main isoforms coexpressed in sarcomeres: a shorter, stiffer N2B-titin (3.0 MDa) and longer, more compliant N2BA isoforms (3.2 to 3.7 MDa). Differential expression of these isoforms is related to alternate gene splicing affecting the functionally elastic titin region, which is confined to the sarcomeric I-band. 1 The springy titin segment comprises regions of serially linked immunoglobulin-like (Ig) domains separated by a cardiacspecific N2-B domain and a so-called PEVK segment (rich in proline, glutamate, valine, and lysine residues). The N2BA isoforms additionally have an N2-A domain and contain more Ig domains and PEVK-rich modules compared to the N2B isoform.Differential expression of titin isoforms determines passive stiffness of the sarcomere. 2,3 A low ratio of N2BA:N2B isoforms is found in sarcome...
Cofilin plays a key role in the choreography of actin dynamics via its ability to sever actin filaments and increase the rate of monomer dissociation from pointed ends. The exact manner by which phosphoinositides bind to cofilin and inhibit its interaction with actin has proven difficult to ascertain. We determined the structure of chick cofilin and used NMR chemical shift mapping and structure-directed mutagenesis to unambiguously locate its recognition site for phosphoinositides (PIs). This structurally unique recognition site requires both the acyl chain and head group of the PI for a productive interaction, and it is not inhibited by phosphorylation of cofilin. We propose that the interaction of cofilin with membrane-bound PIs abrogates its binding to both actin and actin-interacting protein 1, and facilitates spatiotemporal regulation of cofilin activity.
: Indoleamine 2,3-dioxygenase 1 is expressed in resistance vessels in human sepsis and Indoleamine 2,3-dioxygenase activity correlates with hypotension in human septic shock. Indoleamine 2,3-dioxygenase 1 is thus a potential novel contributor to hypotension in sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.