Limited ear dataset yields to the adaption of domain adaptive deep learning or transfer learning in the development of ear biometric recognition. Ear recognition is a variation of biometrics that is becoming popular in various areas of research due to the advantages of ears towards human identity recognition. In this paper, handpicked CNN architectures: AlexNet, GoogLeNet, Inception-v3, Inception-ResNet-v2, ResNet-18, ResNet-50, SqueezeNet, ShuffleNet, and MobileNet-v2 are explored and compared for use in an unconstrained ear biometric recognition. 250 unconstrained ear images are collected and acquired from the web through web crawlers and are preprocessed with basic image processing methods including the use of contrast limited adaptive histogram equalization for ear image quality improvement. Each CNN architecture is analyzed structurally and are fine-tuned to satisfy the requirements of ear recognition. Earlier layers of CNN architectures are used as feature extractors. Last 2-3 layers of each CNN architectures are fine-tuned thus, are replaced with layers of the same kind for ear recognition models to classify 10 classes of ears instead of 1000. 80 percent of acquired unconstrained ear images is used for training and the remaining 20 percent is reserved for testing and validation. Results of each architectures are compared in terms of their training time, training and validation outputs as such learned features and losses, and test results in terms of above-95% accuracy confidence. Above all the used architectures, ResNet, AlexNet, and GoogleNet achieved an accuracy confidence of 97-100% and is best for use in unconstrained ear biometric recognition while ShuffleNet, despite of achieving approximately 90%, shows promising result for use in mobile version of unconstrained ear biometric recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.