A mixed-mode oscillation (MMO) is a complex waveform with a pattern of alternating smallamplitude oscillations (SAOs) and large-amplitude oscillations (LAOs). MMOs have been observed experimentally in many physical and biological applications, but most notably in chemical reactions. We are interested in MMOs of an autocatalytic chemical reaction that can be modeled by a system of three ordinary differential equations with one fast and two slow variables. This difference in time scales provides a mechanism for generating small and large oscillations. Provided the timescale ratio ε is sufficiently small, Geometric Singular Perturbation Theory predicts the existence of two-dimensional locally invariant manifolds called slow manifolds. Slow manifolds and their intersections, which occur along so-called canard orbits, give great insight into the mechanisms for generating SAOs. The mechanisms for LAOs are less well understood and involve analysis of the global dynamics. We study the autocatalytic reaction model in a parameter regime with ε relatively large and observe very complex behavior. We find that for larger values of ε, the structure of the slow manifolds is more intricate than what is predicted by the theory for sufficiently small ε. Canard orbits in this parameter regime are organized in pairs that have the same number of SAOs. Our results suggest a mechanism where SAOs transform into LAOs and change the geometry of global returns in MMOs.
Heteroclinic-induced spiral waves may arise in systems of partial differential equations that exhibit robust heteroclinic cycles between spatially uniform equilibria. Robust heteroclinic cycles arise naturally in systems with invariant subspaces, and their robustness is considered with respect to perturbations that preserve these invariances. We make use of particular symmetries in the system to formulate a relatively low-dimensional spatial two-point boundary-value problem in Fourier space that can be solved efficiently in conjunction with numerical continuation. The standard numerical set-up is formulated on an annulus with small inner radius, and Neumann boundary conditions are used on both inner and outer radial boundaries. We derive and implement alternative boundary conditions that allow for continuing the inner radius to zero and so compute spiral waves on a full disk. As our primary example, we investigate the formation of heteroclinic-induced spiral waves in a reaction–diffusion model that describes the spatiotemporal evolution of three competing populations in a 2D spatial domain—much like the Rock–Paper–Scissors game. We further illustrate the efficiency of our method with the computation of spiral waves in a larger network of cyclic dominance between five competing species, which describes the so-called Rock–Paper–Scissors–Lizard–Spock game.
We study a rock–paper–scissors model for competing populations that exhibits travelling waves in one spatial dimension and spiral waves in two spatial dimensions. A characteristic feature of the model is the presence of a robust heteroclinic cycle that involves three saddle equilibria. The model also has travelling fronts that are heteroclinic connections between two equilibria in a moving frame of reference, but these fronts are unstable. However, we find that large-wavelength travelling waves can be stable in spite of being made up of three of these unstable travelling fronts. In this paper, we focus on determining the essential spectrum (and hence, stability) of large-wavelength travelling waves in a cyclic competition model with one spatial dimension. We compute the curve of transition from stability to instability with the continuation scheme developed by Rademacher et al (2007 Physica D 229 166–83). We build on this scheme and develop a method for computing what we call belts of instability, which are indicators of the growth rate of unstable travelling waves. Our results from the stability analysis are verified by direct simulation for travelling waves as well as associated spiral waves. We also show how the computed growth rates accurately quantify the instabilities of the travelling waves.
Many physiological phenomena have the property that some variables evolve much faster than others. For example, neuron models typically involve observable differences in time scales. The Hodgkin–Huxley model is well known for explaining the ionic mechanism that generates the action potential in the squid giant axon. Rubin and Wechselberger (Biol. Cybern. 97:5–32, 2007) nondimensionalized this model and obtained a singularly perturbed system with two fast, two slow variables, and an explicit time-scale ratio ε. The dynamics of this system are complex and feature periodic orbits with a series of action potentials separated by small-amplitude oscillations (SAOs); also referred to as mixed-mode oscillations (MMOs). The slow dynamics of this system are organized by two-dimensional locally invariant manifolds called slow manifolds which can be either attracting or of saddle type.In this paper, we introduce a general approach for computing two-dimensional saddle slow manifolds and their stable and unstable fast manifolds. We also develop a technique for detecting and continuing associated canard orbits, which arise from the interaction between attracting and saddle slow manifolds, and provide a mechanism for the organization of SAOs in . We first test our approach with an extended four-dimensional normal form of a folded node. Our results demonstrate that our computations give reliable approximations of slow manifolds and canard orbits of this model. Our computational approach is then utilized to investigate the role of saddle slow manifolds and associated canard orbits of the full Hodgkin–Huxley model in organizing MMOs and determining the firing rates of action potentials. For ε sufficiently large, canard orbits are arranged in pairs of twin canard orbits with the same number of SAOs. We illustrate how twin canard orbits partition the attracting slow manifold into a number of ribbons that play the role of sectors of rotations. The upshot is that we are able to unravel the geometry of slow manifolds and associated canard orbits without the need to reduce the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.